Optimizing over trained GNNs via symmetry breaking
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Motivation: Forward & Backward problems over GNNs

Prediction (Forward): What are the properties for a given molecule?

molecules GNN properties
NH»
\>\< E\I\'/\ quantum mechanics
\ —~/ Pa physico-chemical
- bioactivity

/\(\ o< - (eco)-toxicity
| D

Optimization (Backward): What is the optimal molecule with desired properties?
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Problem definition

Given a trained GNN, we aim to find the input with optimal property !:
(X", A") = argmin GNN (X, A)
(X,A)
st fj(X,A4)<0,j €T
gk(XaA) =0,kek

where X' denotes features, A is the adjacency matrix of input graph, f;, gi are problem-specific
constraints, and 7, K are index sets.

LOptimality is defined on this given GNN instead of true properties.
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Symmetry issue

Observation

GNN is permutation invariant?: isomorphic graphs have the same output.

Good for training

Different indexing of a graph data will not influence its output.

2In this work, we only consider GNNs that are permutation invariant.
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Symmetry issue

Observation

GNN is permutation invariant?: isomorphic graphs have the same output.

Good for training

Different indexing of a graph data will not influence its output.

Bad for optimization
Each graph indexing corresponds to a solution, which significantly enlarges the searching space.

For example, there are 4! = 24 different indexing for this molecule:
1 1 2 1 2 2
3 2 : 2 3 : 3 1 : 0 2 : 1 0 : (] 1 :
NH NH NH NH NH NH
0 0 0 3 3 3

2In this work, we only consider GNNs that are permutation invariant.
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Symmetry-breaking constraints |3

Each node (except 0) should be linked with a node with smaller index:

Vo € [N\{0}, Ju < v, s.t. Ay, =1 (S1)

i.e., the subgraph induced by nodes {0,1,...,v} is connected.

10 out of 24 solutions violate (S1), for example:

°—2<’ — Node 1 is not linked with node 0.
N

3N: number of nodes.
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Symmetry-breaking constraints 11*

Node 0 has the minimal function value under a designed hierarchical function h : R — R
defined over features:

h(Xo) < h(Xy), Vo € [N]\{0} (S2)

i.e., node 0 has the most "special" features under the action of h.

11 out of 14 solutions violate (S2), for example:

o 1 Construct h such that A(N) < h(C), then the
2 —

NH nitrogen atom should be indexed 0.

4F: number of features.
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Symmetry-breaking constraints I11°

The neighbor set of a node with smaller index has smaller lexicographical order:

LOWN (v)\{v+1}) < LOWN (v + 1)\{v}), Vv € [N —1]\{0} (S3)

i.e., node v has "stronger" neighbors comparing to node v + 1.
2 out of 3 solutions violate (S3), for example:

. N(2) = {1}, N(3) = {0,1}
%N .

! LOWN(2)\{3}) > LON(3)\{2})

SN (-): neighbor set. LO(-): lexicographical order.
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Do these constraints reduce the diversity of the feasible set?
Algorithm 1 yields at least one feasible indexing for any graph (see proofs in the paper).

Algorithm 1 Indexing algorithm

Input: G = (V, E) with node set V = {vg,v1,...,vny—_1} (N := |V]|). Denote the neighbor set of node v as N (v), Vv € V.
Z(vg) « 0 > Assume that v is indexed with 0
s+ 1 > Index for next node
Vll «— {vo} > Initialize set of indexed nodes
while s < N do
Vs +— VAV > Set of unindexed nodes
NZ(W) «—{Z(u) | v € N(v) NV}, Vv € VJ > Obtain all indexed neighbors

rank®(v) < [{LON?(u)) < LON®(v)) | Vu € V5'}|, Vv € V5
> Assign a rank to each unindexed node

Z(v) Vv € V{° . .

Z5(v) ’ 1 > A t d
(v) {ranks(v) +s VeevVs ssign temporary indexes
NE(W) «—{Z%(u) | u € N(v)}, Vv € V5 > Define temporary neighbor sets based on Z°
v® < arg min_ LO(NY (v)) > Neighbors of v° has minimal order

veVy
> If multiple nodes share the same minimal order, arbitrarily choose one
Z(v®) =s > Index s to node v?
Vls_*'1 — Vi u{v®} > Add v° to set of indexed nodes
s+ s+ 1 > Next index is s + 1
end while

Output: Z(v),v € V > Result indexing
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Mixed-integer formulation for GNNs

Since the input graph structure is not fixed, all elements in the adjacency matrix are variables:

zr:z()l) =0 (Z eu%wf})%a:g*” + b&”)

ueV
where

(0)

@ x, : (continuous or discrete) variables, the features of node v in I-th layer.
@ ¢, _,,: binary variable, the existence of edge u — v.

° ngv,bgl): constants, weights and biases of I-th layer.

Bilinear terms eu_w:c&l_l) result in a mixed-integer quadratically constrained optimization
problem (MIQCP), which can be handled by state-of-the-art solvers such as Gurobi.

Alternatively, they can be reformulated in a linear way using big-M formulation.
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Numerical results

Table 1: Numbers of feasible solutions for QM7.

Optimal molecular design: N (1) (S1)-(S2) (S1)-(S3)
@ atom — node, bond — edge 4 3,323 726 416
_ 5 67,020 11,747 3,003
@ atom type, #neighbors, ... — features 6 > 2,500,000 443,757 50,951
. : . 7 >2,500,000 > 2,500,000 504,952
@ chemical requirements — constraints
Our numerical results show that: 7
. . 12 _— b?linear bilinear+BrS
@ Symmetry-breaking constraints %0 big-M big-M+BrS 4
. m 37
D . o,
significantly reduce the searching space. 2 s
. . ~ 48
@ After breaking symmetry, the solving 5 6 ”’ -
. . )
time is largely decreased. £4
2
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Formulations
Figure 1: Average solving time over 50 runs.
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Numerical results

Optimal molecular design:
@ atom — node, bond — edge
@ atom type, #neighbors, ... — features

@ chemical requirements — constraints

Our numerical results show that:

e Symmetry-breaking constraints

significantly reduce the searching space.

@ After breaking symmetry, the solving
time is largely decreased.

Thanks for your attention!
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Table 1: Numbers of feasible solutions for QM7.

N (s1) (S1) - (S2) (S1)-(S3)
4 3,323 726 416
5 67,020 11,747 3,003
6 > 2,500,000 443,757 50,951
7 > 2,500,000 > 2,500,000 504,952
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Figure 1: Average solving time over 50 runs.
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