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• Introduced by Dwork et al. (Fairness through Awareness, ITCS 2012)

Similar individuals should be treated similarly

• How can you define similarity between individuals?

i. For every two elements 𝑥, 𝑦 you are given 𝜎 𝑥, 𝑦 ∈ 0,1

ii. The smaller 𝜎(𝑥, 𝑦) is the more similar the elements

• The similarity function is always assumed given
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Main Obstacle and Prior Work

• Similarity scores are not trivial to obtain (even raised in Dwork et al.)

▪ Deferred to third parties

▪ Ideally should be learned

• C. Ilvento. (Metric learning for individual fairness, FAccT 2019 ) learns 

similarity scores through the use of oracle queries

▪ Assumption: The 𝜎 𝑥, 𝑦 form a metric space

• Mukherjee et al. (Two simple ways to learn individual fairness

metrics from data, ICML 2020)

▪ Learns a specific metric function

• Wang et al. (An empirical study on learning fairness metrics for compas data 

with human supervision, 2019)

▪ Purely empirical and focuses on specific metrics
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Our Setting

• Starting point: Learning similarities is sometimes easy and other times hard

▪ Easy: Comparing homogeneous data; same “demographic” group (equivalently data

produced by the same distribution)

▪ Hard: Comparing heterogeneous data; different demographics

▪ E.g.: PhD admissions. Comparisons for students from different universities are hard

• Feature space ℐ . 𝛾 “demographic” groups, where each ℓ ∈ 𝛾 is governed by a 

distribution 𝒟ℓ. 𝑥 ∼ 𝒟ℓ denotes an element 𝑥 ∈ ℐ that is randomly drawn from 𝒟ℓ. 

The support of each distribution corresponds to the members of the group.

• For each ℓ ∈ 𝛾 there exists a given metric similarity function 𝑑ℓ: ℐ
2 ↦ [0,1].

• For every distinct ℓ, ℓ′ there exists an unknown similarity function 𝜎ℓ,ℓ′: ℐ
2 ↦ [0,1].



Computational Goal
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Tools for learning:

i. For each ℓ a set 𝑆ℓ of i.i.d. samples from 𝒟ℓ

ii. Access to an expert oracle. You provide the oracle with 𝑥 ∈ 𝒟ℓ and y ∈ 𝒟ℓ′ and 

it returns 𝜎ℓ,ℓ′ x, y

Objectives:

i. Polynomial number of samples

ii. Minimum queries



Results
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• Algorithm with provable PAC guarantees:

i. Almost optimal error probability (no free lunch theorem)

ii. Almost optimal number of queries (lower bound on queries required)

iii. Experimental validation
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