
Multi-Swap K-means++

Lorenzo Beretta (University of Copenhagen)
Vincent Cohen-Addad (Google Research)
Silvio Lattanzi (Google Research)
Nikos Parotsidis (Google Research)

K-means

Input:
Output:

that minimize

x1, x2, …, xn ∈ ℝd

c1, c2, …, ck ∈ ℝd

n

∑
i=1

min
j=1…k

| |xi−cj | |2
2

c1

c2
c3

c4

Output:
that minimize

c1, c2, …, ck ∈ ℝd

n

∑
i=1

min
j=1…k

| |xi−cj | |2
2

c1

c2
c3

c4

K-means

Output:
that minimize

Lloyd’s Algorithm
maintain and alternate between

1) for each

2) for each

c1, c2, …, ck ∈ ℝd

n

∑
i=1

min
j=1…k

| |xi−cj | |2
2

c1…ck

Cj ← {xi captured by cj} j

cj ← mean(Cj) j

c1

c2
c3

c4

K-means

c1K-means++ [AV07]
Seeding Strategy
For :

Sample proportionally to

Set

j = 1…k

xi min
ℓ<j

| |xi − cℓ | |2
2

cj ← xi

c1

c2

K-means++ [AV07]
Seeding Strategy
For :

Sample proportionally to

Set

j = 1…k

xi min
ℓ<j

| |xi − cℓ | |2
2

cj ← xi

c1

c2 c3

K-means++ [AV07]
Seeding Strategy
For :

Sample proportionally to

Set

j = 1…k

xi min
ℓ<j

| |xi − cℓ | |2
2

cj ← xi

c1

c2 c3

c4

K-means++ [AV07]
Seeding Strategy
For :

Sample proportionally to

Set

j = 1…k

xi min
ℓ<j

| |xi − cℓ | |2
2

cj ← xi

c1

c2 c3

c4

Seeding Strategy
For :

Sample proportionally to

Set

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

j = 1…k

xi min
ℓ<j

| |xi − cℓ | |2
2

cj ← xi

O(log k)

K-means++ [AV07]

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!O(log k)

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

Single-Swap KM++
Repeat times:

 Sample 1 more center

 Swap-out the least useful

O(log k)

Õ(k)
ck+1

cj

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

c5

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

Single-Swap KM++
Repeat times:

 Sample 1 more center

 Swap-out the least useful

O(log k)

Õ(k)
ck+1

cj

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

c5

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

Single-Swap KM++
Repeat times:

 Sample 1 more center

 Swap-out the least useful

O(log k)

Õ(k)
ck+1

cj

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

Single-Swap KM++
Repeat times:

 Sample 1 more center

 Swap-out the least useful

O(log k)

Õ(k)
ck+1

cj

c1

c2

Single-Swap K-means++ [LS19]

c3

c4

Lloyd’s Algorithm
Only improves current solution.

K-means++ seeding

-approximation!

Single-Swap KM++
Repeat times:

 Sample 1 more center

 Swap-out the least useful

-approximation! ()

O(log k)

Õ(k)
ck+1

cj

C C ≈ 500

c1

c2

Multi-Swap K-means++ [this work]

c3

c4

Lloyd’s Algorithm
Only improves current solution.

Single-Swap K-means++

-approximation! ()

Multi-Swap KM++
Repeat times:

 Sample more centers

 Swap-out the least useful

9-approximation!

C C ≈ 500

poly(k)
p ck+1…ck+p

cj1…cjp

Our Theorems
Multi-Swap K-means++

-approx in time .

A practical 10.5-approx in time .

(9 + ε) nd ⋅ poly(k)

nd ⋅ poly(k)

Our Theorems
Multi-Swap K-means++

-approx in time .

A practical 10.5-approx in time .

Single-Swap K-means++
Improved analysis: 26.7-approx rather than -approx.

(9 + ε) nd ⋅ poly(k)
nd ⋅ poly(k)

(≈ 500)

Our Theorems
Multi-Swap K-means++

-approx in time .

A practical 10.5-approx in time .

Single-Swap K-means++
Improved analysis: 26.7-approx rather than -approx.

A Tight Result for Local Search
[KMNPSW SoCG 02] proved that 9-approx is tight for local search.

(9 + ε) nd ⋅ poly(k)
nd ⋅ poly(k)

(≈ 500)

Our Experiments
Multi-Swap K-means++ seeding

Our Experiments
Multi-Swap K-means++ seeding Seeding + Lloyd’s postprocessing

