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Lloyd’s Algorithm 
maintain  and alternate between


1)  for each 
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Lloyd’s Algorithm 
Only improves current solution.
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Single-Swap KM++ 
Repeat  times:

    Sample 1 more center 

    Swap-out the least useful 
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Õ(k)
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Lloyd’s Algorithm 
Only improves current solution.

Single-Swap K-means++ 

-approximation! ( )


Multi-Swap KM++ 
Repeat  times:

    Sample  more centers 

    Swap-out the least useful 


9-approximation!


C C ≈ 500

poly(k)
p ck+1…ck+p

cj1…cjp



Our Theorems
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A practical 10.5-approx in time .
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Improved analysis: 26.7-approx rather than -approx.


A Tight Result for Local Search 
[KMNPSW SoCG 02] proved that 9-approx is tight for local search.


(9 + ε) nd ⋅ poly(k)
nd ⋅ poly(k)

( ≈ 500)



Our Experiments
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Our Experiments
Multi-Swap K-means++ seeding Seeding + Lloyd’s postprocessing 


