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Diverse Indiscriminate Attacks
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Attacks:
KKT [1], MTP [2], Min-Max [1,3], Influence [1]

known training algorithm, clean 

train/test data, model 

architecture, possible defenses 

with defenses, effective 

on some datasets while 

ineffective on others

[1]: Koh et al., “Stronger Data Poisoning Attacks Break Data Sanitization Defenses”, Machine Learning 2021.  

[2]: Suya et al., “Model-Targeted Poisoning Attacks with Provable Convergence”, ICML 2021

[3]: Steinhard et al., “Certified Defenses Against Data Poisoning Attacks”, N(eur)IPS 2017 

Threat Model

Are these attacks always effective without defenses?



Evaluation without Defenses
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MNIST 1-7 Dogfish Enron

Datasets to train Linear SVM

Filtered Enron

Results of more models and datasets are in the paper.

Collection of 

Spam emails
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near boundary 
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Best Attack Effectiveness Varies 
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Are some datasets (e.g., MNIST 1-7) just robust to state-of-the-art 

poisoning attacks or inherently robust to any poisoning attacks? 
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Understanding Optimal Attacks

Theorem 1 (Informal): optimal finite-sample poisoning attacks are 
consistent estimators of optimal distributional poisoning attacks if:

1) hypothesis class satisfies uniform convergence

2) surrogate loss for model training is strongly-convex

3) risk of the model is Lipchitz continuous.  

Distributional optimal poisoning attacks 
(theory): convenient for analysis

Finite-sample optimal poisoning attacks 
(practice): relevant to practical applications

Generate poisoned distribution to maximize riskGenerate poisoned dataset to maximize risk

Sufficient Samples

Useful to study distributional optimal attacks as they still connect to 

finite-sample attacks in practice!
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Theorem 2 (Informal): for convex hypothesis class, optimal 
distributional poisoning is achieved with maximum poisoning ratio 𝜖 if 
either condition is satisfied:

1) clean data points are not filtered during training 

2) For any model 𝜽, there is a distribution 𝜇 such that gradient w.r.t. 𝜇 
is 𝟎.  

Using Maximum Poisoning Ratio

When studying distributional optimal poisoning attacks, we can use 

the maximum poisoning ratio!



Characterize Optimal Attacks in 1-D Gaussian

Negative label -1 Positive label +1

Linear SVM on1-D two Gaussian mixtures

Goal

Analyze the impact of 

distributional properties on 

optimal poisoning attacks 

that have maximum risk on 

clean distribution
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Theorem 3 (Informal): distributions with smaller 𝛾1 − 𝛾2 /𝜎 
(separability ratio) and larger 2𝑢 (larger constraint size) are inherently 
more vulnerable to poisoning attacks and vice-versa. 

𝛾1 − 𝛾2 /𝜎: small ratio implies more near-boundary points and 

more prone to misclassifications  

Distributional Factors on Optimal Attack

Larger constraint size 2𝑢: moves the decision boundary more 

with poisoning points



Projected Separability Ratio (Sep/SD)

Lower Sep/SD: more 

vulnerable

Higher Sep/SD: less 

vulnerable

Projected Separability (Sep)

Projected Standard Deviation (SD)
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Projected Separability Ratio 𝛾1 − 𝛾2 /𝜎: compute by projecting onto 𝑤𝑐 , 
name as Sep/SD 



Projected Constraint Size Ratio (Sep/Size)

Larger Sep/Size, Smaller 

Size: less vulnerable

Smaller Sep/Size, Larger 

Size: more vulnerable
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Projected constraint size 2𝑢: project 𝐶 onto 𝑤𝑐 , name as Size (use Sep/Size 
to compare different datasets)

Projected Constraint Size (Size):
2𝑢 = argmax𝑥∈𝐶𝑤

𝑇𝑥 − argmin𝑥∈𝐶𝑤
𝑇𝑥

Constraint Set 𝐶
([−𝑢, 𝑢] for 1-D Gaussian)



Correlation of Factors to the Upper Bound 
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Lower loss on clean distribution → higher average margin, higher Sep/SD, 

inherently less vulnerable

Lower projected constraint size → loss is small, inherently less vulnerable

Theorem 4 (Informal): training models with monotone non-decreasing 
loss w.r.t the (negative) margin, the maximum risk from any poisoning is 
upper bounded by the loss on the clean distribution and the loss w.r.t. the 
projected constraint size, for the given clean model.  
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Negative Correlation of Factors to 
Empirical Vulnerability

Less vulnerable datasets (e.g., MNIST 1-7) have higher Sep/SD and 

Sep/Size (smaller Size), and vice versa! 
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Implications: Improved Robustness from Better 
Representations
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Better Features Reduce Attack Effectiveness
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Measures error increase from 

state-of-the-art attacks at 3% 

poisoning ratio. 

R-X: ResNet18 model on 

CIFAR10 dataset trained for X 

epochs. 

LeNet: fully trained simple CNN

Binary classification: “Truck” vs 

“Ship”



Main Takeaways
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Xiao Zhang

David EvansYuan Tian

Distributions with high class-wise separability 

and low projected constraint size are inherently 

robust to indiscriminate poisoning attacks. 

Learning better feature representations can 

improve resistance to poisoning attacks.

Fnu Suya

Updated paper: https://arxiv.org/abs/2307.01073
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