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How many examples do we need?

PAC learning [Valiant 84] : Θ(𝑉𝐶(𝐶))



Private PAC learning [KLNRS 08]

• Learner PAC learns the model

• Learner L is differentially private

• Theorem: n examples suffice, 

• 𝑛 = 𝑂(log|𝐶|) [KLNRS 08] 

• 𝑛 = 𝑂((𝐿𝐷𝑖𝑚|𝐶|)!) [BLM20, GGKM20]
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Price of private learning

• PAC learning: 𝑛 = Θ(𝑉𝐶(𝐶))

• Private learning: 𝑛 =
𝑂(min(log 𝐶 , 𝐿𝐷𝑖𝑚"(𝐶))

• 𝑉𝐶(𝐶) ≤ min(log 𝐶 , 𝐿𝐷𝑖𝑚 𝐶 )

Learning threshold functions
PAC learning Pure DP 

learning
Approximate 
DP learning

𝑛 = 𝑂(1) 𝑛 = Θ(log|𝑋|) 
[FX 15]

𝑛 = Θ(log∗|𝑋|)
[BNS 13, BNSV 15, 

CLNSS 23,…]

𝑛 grows 
with |𝑋|
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Rethinking private learning
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Blackbox prediction [Dwork Feldman 18]

• Labeled dataset 𝑆 = (𝑥!, 𝑦!), … , (𝑥", 𝑦")

• A single differentially private prediction: on query 𝑥, 
output the label 𝑦

• 𝑛 = Θ(𝑉𝐶(𝐶))

• Answer 𝑡 prediction queries by increasing 𝑛 to 
𝑂 𝑡𝑉𝐶 𝐶 	 (using advanced composition)

𝑛 grows 
with t
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Main Result: private everlasting prediction
Predict an unlimited number of queries

• Given labeled dataset 𝑆 =
(𝑥#, 𝑦#), … , (𝑥$𝑦$) , we can privately 

predict an unlimited number of queries, 
where 𝑛 = 𝑂(𝑉𝐶%(𝐶)).

• Utility Guarantee: with probability 1-𝛽, 
every query is answered with 𝛼-accurate 
hypothesis

• Privacy guarantee: differentially private 
both for S and queries. An adaptive 
version of JDP [Kearns et al. 2015]
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Observation: black box prediction cannot only 
depend on S

• One black box private prediction implies private learning
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A generic construction

• 𝑆" ≈ 𝑉𝐶# 𝐶

• 𝑚 ≈ 𝑉𝐶#(𝐶)
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Prediction queries
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Privacy of labeled set S
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Privacy of labeled set S
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Generating labeled samples for the next round

LabelBoost[BNS14]:
Uses exponential 

mechanism to select a 
hypothesis, then uses this 
hypothesis to give labels

𝑆! 𝑥! 𝑥" … 𝑥$
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Update 𝑆!

LabelBoost[BNS14]:
Use exponential 

mechanism select a 
hypothesis, then use this 

hypothesis give labels

𝑆! 𝑥! 𝑥" … 𝑥$
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Summary

• Everlasting prediction alternative to private learning

• Predict any concept class with finite VC (e.g. thresholds over the reals)

• It is efficient on some hard tasks for private learning (e.g. EncThresh [BZ15])

• Open questions

• Could |𝑆| be reduced to linear in 𝑉𝐶?

• It’s 𝑉𝐶" in our construction

• Could this construction be made polynomial time?

• We use exponential mechanism to generate new dataset.

Private learning Our work
Thresholds over reals impossible 𝑛 = 𝑂(1)

EncThresh Time inefficient Time efficient


