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How many examples do we need?

PAC learning [Valiant 84| : @(VC(C))



Private PAC learning [KLNRS 08]

* | earner PAC learns the model

* Learner L is differentially private

* Theorem: n examples suffice,

e n = 0(log|C|) [KLNRS 08]

e n = 0((LDim|C|)®) [BLM20, GGKM20] w



Price of private learning
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* PAC learning: n = O(VC(C)) .» - L -
Y1
* Private learning: n = S . 9
O (min(log|C|, LDim®(C)) vz

e /C(C) < min(log|C|,LDim(C))
Learning threshold functions

PAC learning Pure DP Approximate
learning DP learning
n = 0(1) n = 0(log|X|]) n = 0og*|X]) @
[FX 15] [BNS 13, BNSV 15,
CLNSS 23,.. ]




Rethinking private learning




Rethinking private learning




Blackbox prediction [Dwork Feldman 18]
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* Labeled dataset § = ((xl,yl), oy (xn: Yn))

* A single differentially private prediction: on query X,
output the label y

e n=0(VC(C))

®
* Answer t prediction queries by increasing n to @

9, (\/EVC (C )) (using advanced composition)



Main Result: private everlasting prediction

Predict an unlimited number of queries

* Given labeled dataset S =

((x1,¥1), ..., (X5, V), we can privately
predict an unlimited number of queries,

where n = 0(VC4(C)).

u
¥

Black

* Utility Guarantee: with probability 1-p, S *
every query is answered with a-accurate
hypothesis

Box 1

>

Y

| | | | Y1 Y2 Y3
* Privacy guarantee: differentially private

both for S and queries. An adaptive
version of JDP [Kearns et al. 2019]



Observation: black box prediction cannot only
depend on S

* One black box private prediction implies private learning



A generic construction
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e |S;| = VC4(C)

e m~ V(C?(C)
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Ym Ym+1




Prediction queries

y = noisy maj(f; (x), ..., fr(x))



Privacy of labeled set S
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y = noisy maj(f; (x), ..., fr(x))
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Privacy of labeled set S

y = noisy maj(f; (x), ..., fr(x))
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Generating labeled samples for the next round

Round i

LabelBoost[BNS14]:
Uses exponential
mechanism to select a

hypothesis, then uses this

hypothesis to give labels
/

Exponential
mechanism

Si+1

| = O v2 U




Update S;

LabelBoost[BNS14]:
Use exponential
mechanism select a
hypothesis, then use this
hypothesis give labels

Exponential
mechanism

Si+1

& &




Summary

* Everlasting prediction alternative to private learning
* Predict any concept class with finite VC (e.g. thresholds over the reals)

* |t is efficient on some hard tasks for private learning (e.g. EncThresh [BZ15])

Private learning Our work
. Open questions Thresholds over reals impossible n = 0(1)
. . EncThresh Time inefficient | Time efficient
* Could |S]| be reduced to linear in VC?

* |t’s VC? in our construction

* Could this construction be made polynomial time?

“Vlawle qou

* We use exponential mechanism to generate new dataset.



