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Background RR¢

 MARL has recently shown remarkable potential in various real-world problems

« However, current MARL algorithms (e.g., QMIX and MAPPO) typically reply on

well-crafted team or individual rewards

* In this work, we focus on sparse reward multi-agent problems
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Motivation '-'1'&'

0)e®
 Discover underlying skills within the multi-agent task and effectively combine these skills

to achieve the final goal

from a global perspective

Wing-play

Counter-
attack

joint behavior

« Two problems:
» how to simultaneously learn team skill and individual skill

» how to combine these skills to accomplish multi-agent tasks
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Multi-Agent Skill Discovery Problem Formulatlo‘m

» We embed multi-agent skill discovery problem into a probabilistic graphlcal model

v 0, is a binary random variable, where O, = 1 denotes timestep
t is optimal, and O, = 0 indicates timestep t is not optimal
v" team skill Z is conditioned on the global state s;

v" individual skill z* is conditioned on both the team skill Z and

agent g*’s partial observation o}
» We then perform structured variational inference to derive our objective

T
log p(Oo:1) > Erg(r) [Z (’F(Sr: at) + logp(Z|st) + Z_._l log p(2' |0}, Z)
t=0 *~ - v

diversity term

—logq(Z]s:) = ) logq(z Iﬂt,Z) Zé:llﬂgq(ailoi,zi))]j

g

i T
skill entropy term action entropy term
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Method v

 To optimize the derived lower bound, we utilize four approximate functions and
Integrate them into a two-level hierarchical structure
» high-level skill coordinator
mp(Z,z5"s¢, 00) = q(Z]sy), Q(Zi|0£» Z)
» low-level skill discoverer
m,(at|of, z') - q(ak|of, z')
» team skill discriminator
qp(Zls¢) - p(Zls;)

> individual skill discriminator

qd(zi|oé,Z) - p(zi|oé,Z)
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 The Overall Framework
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 Overall Training
> reward for high-level policy: r* = Y520 714,
> reward for low-level policy: 1} = A1 + Aplog qp (Z|Se41) + Aglog qq(zt|ot, 1, Z)
» we adopt the popular PPO objective to optimize both the high-level and low-level policy

’
10 p(O0:7) > Erng(r)| 3 (r(st,a2) +logp(Z]se) + > logp(2'lo}, 2)

t:V N ~ 4 used as intrinsic reward
used as extrinsic reward for both diversity term > for low-level policy
high-level and low-level polic n PR n iy i _i
o PN —logq(Zs)) = Y logq(z'loy, Z) =) lﬂgq(atlﬂf,z))],
entropy of high-level policy <——— skill entropy term action entropy term — entropy of low-level policy

» the skill discriminator is trained in a supervised manner with cross-entropy loss

‘{:‘i((ft’U: {Dd) = _[E:{S..Z:IND [l'Dg QD(Zl'?}] - Z [E:{G"._Zi'i}w“ﬂ [lﬂg gd(’zi|ﬂi? Z):l 1

i=1
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Experiments Ri¢

 Case Study

(a) Alice and Bob b Z=0,z'=322=2 (@zZ=1z'=12z"=0

» two team skills Z = 0,1 correspond to collecting the blue diamond and red diamond for the whole team
> four individual skills zt = 0,1, 2, 3 guide the individual agent to reach the red diamond, red button,

blue diamond and blue button



t\_!é;

2 NEURAL INFORMATION
'. PROCESSING SYSTEMS

Experiments ,l;

* Performance on SMAC with 0-1 reward and Overcooked
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