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1. Introduction: Spectral Clustering on Incomplete Data

Spectral Clustering’s performance highly relies on the quality of the similarity matrix,
such as the kernel matrix and affinity matrix.

Step 1. Construct A Similarity Matrix: S = K or C
▶ Calculate a (Gaussian) kernel K ∈ Rn×n from X ∈ Rd×n.
▶ Learn a self-expressive affinity matrix C ∈ Rn×n from K .

Step 2. Perform Normalized Cut Algorithm [1]

Incomplete Data with missing values is commonly seen in real-life.

Research Question is how to estimate a high-quality kernel or affinity matrix for incomplete
data, benefiting spectral clustering tasks.
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2. Related Work

Traditional methods to deal with incomplete data:

Data Imputation: to impute missing values with estimated values.
▶ Statistical imputation: zero, mean, kNN, regression, ...
▶ Matrix completion: e.g., min ∥UV⊤ − X∥

Distance Calibration: to calibrate a non-metric distance to a metric.

Limitation: no guarantee on the quality of the kernel matrix.

Research Goal is to propose new imputation-free algorithms based on properties of kernel
matrices with a theoretical guarantee.
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3.1 Kernel Correction Algorithm

Motivation:

A valid kernel is a symmetric matrix being positive semi-definite [2].

Formulation:

Estimation: estimate a naive kernel K 0 on incomplete data [3].

Optimization: min
K∈Rn×n

∥K − K 0∥2F s.t. K ⪰ 0, kij = kji ∈ [0, 1], ∀ i , j

Obtain the solution K̂ by Dykstra’s projection algorithm [4].

Guarantee:

∥K ∗ − K̂∥F ≤ ∥K ∗ − K 0∥F , where K ∗ is the unknown ground-truth.
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3.2 Kernel Self-expressive Learning Algorithms

Kernel Self-expressive Learning with Schatten p-norm (KSL-Sp)
▶ Schatten p-norm: ∥C∥Sp := (

∑n
i=1 σ

p
i (C ))1/p with flexible sparsity.

min
C∈Rn×n

∥ϕ(X )− ϕ(X )C∥2F + λ∥C∥Sp , s.t. 0 ≤ cij ≤ 1, ∀1 ≤ i , j ≤ n.

Adaptive Kernel Least-Squares Representation (AKLSR)
▶ Learn kernel and affinity matrices iteratively via KLSR and KC:

min
K⪰0, C

∥K − K 0∥2F + Tr(K − 2KC + C⊤KC ) + λ∥C∥2F .

▶ Solve it by ADMM [5] based on the augmented Lagrange function.

Fangchen Yu, et al. (CUHKSZ) NeurIPS’2023 December 10-16, 2023 6 / 12



4.1 Performance on Kernel Estimation
How to estimate a kernel matrix for incomplete data?

Data imputation: X 0 impute−→ X̂ → K̂

Distance calibration: X 0 → D0 calibrate−→ D̂ → K̂

Kernel correction: X 0 → K 0 correct−→ K̂

Evaluation metrics:

Relative error (RE = ∥K̂−K∗∥F
∥K∗∥F ): measures the accuracy of estimation.

Recall: measures the accuracy of top-10 nearest neighbors.

Table 1: Gaussian kernel estimation on the Yale64 dataset under a missing ratio 80%.

Metric Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

RE↓ 0.113 0.382 0.195 0.381 0.195 0.380 0.376 0.335 0.180 0.112 0.097 0.089

Recall↑ 0.721 0.063 0.275 0.063 0.275 0.066 0.070 0.183 0.571 0.722 0.751 0.767

Our KC method achieves the smallest estimation error and the highest Recall with improved
local relationships, which in turn benefits spectral clustering.
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4.2 Performance on Standard Spectral Clustering

Values of X 0 are missing completely at random.

Use the estimated Gaussian kernel as the input of normalized cut algorithm.

Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI)
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Figure 1: Robustness analysis of standard spectral clustering on the Yale64 dataset.

Our KC method maintains consistent and superior performance even with large missingness.
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4.3 Performance on Self-expressive Affinity Learning
Use the learned affinity matrix as the input of normalized cut algorithm.

KSSC [6]: minC ∥ϕ(X )− ϕ(X )C∥2F + λ∥C∥1
KLSR [7]: minC ∥ϕ(X )− ϕ(X )C∥2F + λ∥C∥2F
KSL-Sp: minC ∥ϕ(X )− ϕ(X )C∥2F + λ∥C∥Sp

AKLSR: minK⪰0,C ∥K − K 0∥2F + Tr(K − 2KC + C⊤KC ) + λ∥C∥2F
Table 2: NMI performance of self-expressive affinity on Yale64 dataset under a missing ratio 80%.

Method Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

KSSC 0.219 0.215 0.167 0.173 0.177 0.218 0.208 0.259 0.588 0.210 0.209 0.616

KLSR 0.606 0.311 0.604 0.320 0.609 0.321 0.327 0.318 0.597 0.603 0.604 0.616

KSL-Sp 0.370 0.315 0.581 0.303 0.579 0.305 0.304 0.295 0.555 0.364 0.599 0.619

AKLSR 0.452 0.327 0.606 0.338 0.605 0.308 0.338 0.312 0.570 0.464 0.575 0.614

Both KSL-Sp and AKLSR algorithms employ corrected kernels to yield dependable affinity
matrices, thereby elevating spectral clustering performance.

Fangchen Yu, et al. (CUHKSZ) NeurIPS’2023 December 10-16, 2023 9 / 12



5. Conclusion

How to boost spectral clustering on incomplete data?

Proposed an imputation-free framework:

Learned a high-quality kernel matrix by the kernel correction algorithm.

Learned a high-quality affinity matrix by the kernel self-expressive affinity learning
algorithms.

Experiments show the effectiveness of kernel correction method, compared to existing
data imputation and distance calibration approaches.
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More Information

Codes are available at
https://github.com/SciYu/Spectral-Clustering-on-Incomplete-Data.

Welcome to visit the homepage and explore potential collaborations in the future.

Paper Github Video Poster Homepage
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