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INTRODUCTION

Motivation:
Deep neural networks suffer performance degradation due to distribution — Test—Tlrr(\_le“l/;c\:l)aptatlon
discrepancies between training and test data.
In practice, the parameters of deployed models may be unmodifiable and Test-Time Data Adaptation
inaccessible in many applications due to intellectual property protection, — +

Zeroth-Order Optimization
(ZOO)

misuse prevention, or privacy concerns in healthcare and finance.

Unreliable predicted labels will lead to unreliable gradient estimations in

ZOO, which makes data features corrupted rather than adapted to Pseudo-Label-Robust
deployed models. | T — Training Strategy

|

Pseudo-Label-Robust Data Adaptation
(SODA)

adapted data corrupted data testdata




METHOD

Problem setting:
C-way image classification task with a distribution shift between the training and test data.
Given: Deployed model M with inaccessible parameters, data adaptor G, unlabeled test data X = {x, x5, ..., xp, }.

Restrictions: only the output probabilities are available from M.

Goal:Adapt X to M without access to the parameters of M using G.



METHOD

ZOO in test-time data adaptation:

Assume the true label of x; is y;, the directional derivative approximation of KL divergence loss is:
. e
Vol = 7 > [(Llyi; Mo G(xi: 0 + ;) — L{yi, Mo G(x;:0)))u;]

q 4
Let g; denote the distrubance of pseudo-label y;,i.e. ¥; = y; + g;,and ﬁie = M o G(x;; 0), the KL divergence loss is:

Li=—H(y;+ ;) + Lee(yi, D7) — o log p?
Then, replacing y; with ¥;, the directional derivative approximation becomes
ﬁgé;{ — ﬁeﬁce + T Z log tr)Jr,uuj

Where Ve L. is the ideal directional derivative apprOX|mat|on

Pseudo-label-robust training:

Select reliable pseudo-labels with small g;: pseudo-labels with confidence higher than 7; the number of selected pseudo-
labels for each class less than (1 — p)n/C.

Data with unreliable pseudo-labels: mutual information maximization
c

Lim(XF) = Exocxo Z ik log Pik] — > ExocxaPir l0g EgocxaDi
k=l



METHOD

Framework overview:

(c) Zeroth-Order Optimization
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(b) During Adaptation

ﬁall (X7 YA,?) — _Eim (Xu) + Q’ﬁce (Xr, ?7) VQf(G) :



THEORETICAL ANALYSIS

For simplicity, we consider the special case where directional derivative approximation equals to gradient
estimation with the mini-batch size = |.

The expected estimation error between the true gradient and the estimated gradient w.r.t. to the whole
test dataset is:

Rx = Ex [E[| VoLi — VoL |-2]]
Before applying pseudo-label-robust training: denote h(x;) = —a; log p?,
Rx < Ex[E[|| VoLce — VoLece ||2] +E[l| Voh — Voh ||2]].

After applying pseudo-label-robust training : according to previous study|[ | ], minimizing cross-entropy
loss is equivalent to maximizing mutual information, then:

7AéX < EXP [E[H ©9£ce_vt9£ce H2]+E[H @Gh_vf’h HQH"FEXu [E[H v9Ece_v9£ce HQH

The upper bound of expected estimation error is tightened after applying our pseudo-label-
robust training strategy.

[1] Boudiaf, Malik, et al. "A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses." ECCV, 2020.



EXPERIMENTS

Experiments on common OOD benchmarks, CIFAR-10-C, CIFAR-100-C and ImageNet-C, the reported
accuracies (%) are averaged over |9 corruptions:

Categories Methods FO Grad. Model Mod. CI10-C C100-C IN-C

- Deployed - - 72.39 4141  31.36
Distill DINE v X 73.86 40.52 -
T BETA v X 75.71 39.62 -

DA-PGD X X 24.63 4.15 14.39

DA-ZOO-Input X X 68.70 31.53  17.57

DA DA-Direct X X 70.48 37,67 2937

DA-PL X X 1295 4144 31091

SODA (Ours) X X 82.55 5241 42.14

SODA-R (Ours) v X 88.39 60.31  48.70

MA MA-SO v v 86.54 62.02  56.90

More extensive experiments and discussions can be found in paper.



EXPERIMENTS

Experiments in online setting where test data points arrive sequentially:

An ordered queue with queue size S is maintained during adaptation to store the selected reliable pseudo-labels and
their corresponding data points.

The optimization in SODA-O is not repeated after reaching the entire test dataset but only repeats for the current
test data batch and the cached queue

The results on CIFAR-10-C and CIFAR-100-C:

Methods Deployed SODA-O SODA
Epochs/Batch - 5 10 30 50 100 150 150%*

CIFAR-10-C 1239 7522 777.03 79.63 80.38 81.33 81.71  82.55
CIFAR-100-C 41.41 43.59 4581 48.56 4926 50.04 50.12 5241

*SODA 1s trained over the entire test dataset for 150 epochs




EXPERIMENTS

* Visualization:

test data

adapted data

glass blur motion blur

test data

adapted data

saturate

shot noise

Gaussian noise impulse noise  speckle noise

test data

adapted data
q

snow frost fog contrast

test data

original data

adapted data

elastic transform

pixlelate jpeg compression spatter



CONCLUSIONS

Three challenges:

Unmodifiable model parameters: test-time data adaptation.
Infeasible gradients: zeroth-order optimization.

Unreliable pseudo-labels: pseudo-label-robust training.

Revisiting ZOO in test-time data adaptation and pointing out that the unreliable pseudo-labels can

cause biased gradient estimation in ZOO.

Both experimental and theoretical analyses demonstrate the effectiveness of SODA.



THANKS FOR LISTENING!
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