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Online constrained meta-learning

Online meta-learning: learn to perform tasks while accumulating the
learning experience for future tasks
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Sequential constrained learning tasks

Tasks: T1 T T;
Request Request Request
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@ The optimal solution 6} for task T¢
0f = argmin E,p,, [€o(0,2)] s.t. Ezup,, [4i(0,2)] < cie, i=1,...,m.
e)
o Challenges:

o The data distribution D; = {Dg ¢, D1,t, ..., Dm,:} is unknown, and
only Df" = {D{,,--- ,Df .} can be (i.i.d.) sampled from the
distribution D;.

o Safety constraints should be satisfied.
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Online constrained meta-learning framework
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@ Adapt task-specific parameter ¢, from the meta-parameter ¢ by a

within-task algorithm

@ Deploy model with parameter 6, for task 7;

@ Update the meta-parameter ¢; by a meta-algorithm
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Online constrained meta-learning framework
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@ Within-task algorithm: constrained optimization with biased regularization.

@ Meta algorithm: constrained bilevel optimization?.

Xu and Zhu, “Efficient gradient approximation method for constrained bilevel
optimization”.
S. Xu & M. Zhu (Penn State) Online Constrained Meta-Learning NeurlPS 2023 5/12



N
Metrics

Optimality metric

The task-averaged optimality gap (TAOG) denoted by R)O,[I:T]:

.

_ 1 .

Ropt) = 7 > max {Ezp,, [lo(0}, 2) — o(07,2)] , 0} .
t=1

Recall that 0 is the optimal parameter given the whole data distribution:

0; = argmin E,.p,, [to(0,2)] st. E;up,, [4i(0,2)] < cie, i =1,

7 ce.,m
9o

Constraint violation metric

The task-averaged constraint violation (TACV) denoted by R;,[LT]:

T
1 .
Ri7[1:T] = ? Z max {]EZNDf,r [6,(0;,2)] — GCity 0} , I = 1, SR 1 1
t=1
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-
Task dissimilarity

The dissimilarity of tasks {71,---, 77} is defined as

T

. _ 1 1
§*(Tur) & ming, | =D 51167 — 0|12
t=1

@ The dissimilarity of tasks is defined by the standard deviation of the
optimal task-specific parameters.
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Theoretical guarantee

Upper bounds of TAOG and TACV

Suppose that © is included in a compact cube with edge of length D, i.e.
|olloc < D for any ¢ € ©. Choose the regularization weight
2Vd(pB+Lo+/In DY) .
= . For the task sequence {71,---, 77}, the followin
5 (Ter /D] quence {7, T g

bounds hold for the TAOG and the TACV of the proposed algorithm:

_ nDgr|  [nDr|  [inpE| 1
E[Ro1.71] < O(S*(Ti.1 o+ 4 o+ =),
[ 0,[1 T]] ( ( )\/ ‘D6r| |D5:| |D(\)/all ﬁ)

and

- I Dtr
E[Rinml <O n| t,+| ,Vi=1,...,m.
D]
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Experiment 1: Meta-imitation learning

In each round, the expert performs a demonstration of a task in a free
space. The learner can observe a small number of data points from the
demonstration and needs to perform the task in a new clustered space.

NS

X e ST Tk
Starting from scratch MAML with constraint penalty

Constrained meta-learning

S. Xu & M. Zhu (Penn State) Online Constrained Meta-Learning NeurlPS 2023 9/12



Experiment 1: Meta-imitation learning
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@ Our algorithm outperforms the benchmarks in terms of test error and
collision avoidance, and speeds up the adaptation to new tasks.
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-
Experiment 2: Few-shot image classification with
robustness
@ For a new task, the training data include 25 images (5-way 5-shot
setting) or 5 images (5-way 1-shot setting).

@ Test on test data (clean data) and adversarial-attacked test data
(PGD data).

Dataset: mini-ImageNet (5-way 5-shot)
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@ Our method outperforms the benchmarks in terms of both test

accuracy and learning speed
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Experiment 2: Few-shot image classification with

robustness

Table 2: Clean accuracy (abbreviated as "Clean Acc.") and PGD
accuracy (abbreviated as "PGD Acc.") on the mini-ImageNet

dataset for 5-way 5-shot and 5-way 1-shot learning.

Method Clean Acc. PGD Acc. B-score
MAML + CP 40.78 £0.75 2391 4+0.67 29.83 +0.43
MAML + MOML 3923 +£0.76  25.80 £0.67 31.124+0.70
g ProtoNet + CP 3865+0.72 23.10£0.65 28.67 +0.67
< ProtoNet+ MOML 3506 +0.70  27.24 £0.65  30.51 £ 0.66
=~ BOIL+CP 4044 £079 2594 4+0.69 3129 £0.75
BOIL + MOML 41.224+0.83 27.774+075 3298 £0.79
CML (ours) 39.52+0.80 33.11+0.79 36.03 + 0.79
MAML + CP 56.16 £0.72 3485+ 072 4291 +0.71
MAML + MOML 55.66 £0.78  39.38 £0.77 4589 +0.77
g ProtoNet + CP 59.11 £0.71  3941+£073 46.93 +0.71
<  ProtoNet+ MOML 5872 +0.74 4159 £0.75  48.59 £ 0.74
v BOIL + CP 5854 +£0.76 3428 £0.75 42.94+0.78
BOIL + MOML 6021 £0.79 3547 +£0.78 4437 +0.78
CML (ours) 5974 £0.75 4948 £0.76  54.01 &+ 0.74

@ Our algorithm significantly improves the PGD accuracy than the

benchmarks and keeps the clean accuracy comparable.

S. Xu & M. Zhu (Penn State)

Online Constrained Meta-Learning

NeurlPS 2023

12/12



