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Critical Initialization of Wide and Deep Neural
Networks using Partial Jacobians
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Overview

Deep neural networks need to be initialized at “criticality” to avoid exploding/vanishing gradients and ensure non-
exponential scaling with depth.

Key Contributions:

1. Novel diagnostic for critical initialization, Averaged Partial Jacobian Norm (APJN), that is..
» applicable to general feedforward architectures (Transformers, CNNs, MLPs etc.)
 numerically cheap to estimate
e analytically sound; equivalent to known theoretical measures

2. ldentification and analysis of everywhere-critical architectures:

* Architectures can be designed to be critical regardless of their initialization, by using specific combinations of
normalization layers and residual connections
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Critical Initializtion

To analyse the behaviour of gradients, we define APJN:

giot = Eo |7k |,/ M|

Gradients scale depends on scaling of APIN J4E
Vgl = (VhLL)(Vhth)(Velhl)

Ivoicl® ~ 0 (II7pec] - gt - )

In the limit N; = oo, APJN can be written as a product of
layer-to-layer APJNs:

Jlo,l — Jlo,lo'l‘l Jlo+1,l0+2 .“Jl—l,l

J'" L only depends on 62, o7, ¢ and L.

To avoid exploding/vanishing gradients, we want 7% to behave
non-exponentially with [. This can be achieved by:

<jl-l,l =1
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This gives us the critical line in the g,, — g} plane.

Without LayerNorm, demanding non-exponential behaviour of
K gives us the critical point in the ,, — g}, plane.

At the critical point, J! scales algebraically with [ : | Jot~1=¢
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APJN Phase Diagrams
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J'~1! phase diagrams of MLP ReLU, erf and GELU activations
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For real, finite width networks, we use
numerical estimates for APJN; utilizing
backward pass.

Networks with pre-LayerNormand u = 1
are everywhere critical!

In this case, J0!{~1~¢ where ¢ depends on
Oy, Op.

Bounded activations, with u = 1 without
LayerNorm are semi-critical.

In this case, J0!~eV!/2 where 2 depends
on oy, g3.



Training Results

Without LayerNorm With LayerNorm

RelLU, 0.0 RelLU, 1.0 LN-ReLU, u=0.0 LN-ReLU, u=0.9 LN-RelLU, u=1.0

» Training results are in excellent
agreement with APJN phase
diagrams.

* Networks with Pre-LayerNorm and
u =1 are, in fact, everywhere
trainable!

LN-GELU, u=0.0 LN-GELU, u=0.9 LN-GELU,

* Network with erf, u = 1 and no
LayerNorm has enhanced trainability.
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Training accuracy of L = 50 MLP on FashionMNIST dataset.




ResNet110 V2

J' 1t phase diagrams for (a,, — 03,) and (a,, — 1); training accuracies on CIFAR10.
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* In both cases, the architecture is everywhere-critical with u = 1.
 u < 1 cases are drastically different for LayerNorm and BatchNorm.



Vision Transformer

J'L phase diagrams for (o, — 1), with pre-LN, post-LN and no LN.
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* Inthe pre-LN case, u = 1.0 is everywhere-critical.
e Post-LN and no LN cases do not feature everywhere-criticality.
* The advantage of Pre-LN Transformer is empirically known in literature.

Xiong et al. “On Layer Normalization in the Transformer Architectures”. (2020)
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MLP-Mixer

J' 1 phase diagrams for u = 1.0 and u = 0.5; training accuracies on CIFAR10.
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 u = 1.0 case is everywhere-critical;, while u = 0.5 is not.
* Asaresult, u = 1.0 trained well for all initializations; whereas u = 0.5 deteriorates far from the critical line.



Thank you!

Questions + comments?




