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Overview

Key Contributions:

1. Novel diagnostic for critical initialization, Averaged Partial Jacobian Norm (APJN), that is..
• applicable to general feedforward architectures (Transformers, CNNs, MLPs etc.)
• numerically cheap to estimate
• analytically sound; equivalent to known theoretical measures

2. Identification and analysis of everywhere-critical architectures:
• Architectures can be designed to be critical regardless of their initialization, by using specific combinations of 

normalization layers and residual connections

Deep neural networks need to be initialized at “criticality” to avoid exploding/vanishing gradients and ensure non-
exponential scaling with depth.
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Signal Propagation
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Critical Initializtion
To analyse the behaviour of gradients, we define APJN:
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In the limit 𝑁! → ∞, APJN can be written as a product of 
layer-to-layer APJNs:

𝒥!',! = 𝒥!',!'"#	𝒥!'"#,!'"'⋯𝒥!/#,!	

𝒥!/#,!	only depends on 𝜎&' , 𝜎(', 𝜙 and 𝜇.

To avoid exploding/vanishing gradients, we want 𝒥!',! to behave 
non-exponentially with 𝑙. This can be achieved by:
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This gives us the critical line in the 𝜎& − 𝜎( plane.

Without LayerNorm, demanding non-exponential behaviour of 
𝒦! gives us the critical point in the 𝜎& − 𝜎( plane.

At the critical point, 𝒥!',! scales algebraically with 𝑙 :  𝒥!',!~𝑙/3



𝒥%&#,% phase diagrams of MLP ReLU, erf and GELU activations

• For real, finite width networks, we use 
numerical estimates for APJN; utilizing 
backward pass.

• Networks with pre-LayerNorm and 𝜇 = 1 
are everywhere critical! 
In this case, 𝒥𝑙0,𝑙~𝑙−𝜁 where 𝜁 depends on 
𝜎𝑤, 𝜎𝑏.

• Bounded activations, with 𝜇 = 1 without 
LayerNorm are semi-critical.
In this case, 𝒥𝑙0,𝑙~𝑒 ⁄𝑙 𝜆, where 𝜆 depends 
on 𝜎𝑤, 𝜎𝑏.

APJN Phase Diagrams  
Without LayerNorm With LayerNorm 



Training Results

Training accuracy of 𝐿 = 50 MLP on FashionMNIST dataset.

• Training results are in excellent 
agreement with APJN phase 
diagrams.

• Networks with Pre-LayerNorm and 
𝜇 = 1 are, in fact, everywhere 
trainable!

• Network with erf, 𝜇 = 1 and no 
LayerNorm has enhanced trainability.

Without LayerNorm With LayerNorm 
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• In both cases, the architecture is everywhere-critical with 𝜇 = 1. 
• 𝜇 < 1 cases are drastically different for LayerNorm and BatchNorm.

𝒥!/#,! phase diagrams for 𝜎& − 𝜎(  and 𝜎& − 𝜇 ; training accuracies on CIFAR10.



Vision Transformer
𝒥!/#,! phase diagrams for 𝜎& − 𝜇 , with pre-LN, post-LN and no LN.

• In the pre-LN case, 𝜇 = 1.0 is everywhere-critical.
• Post-LN and no LN cases do not feature everywhere-criticality.
• The advantage of Pre-LN Transformer is empirically known in literature. 

Xiong et al. “On Layer Normalization in the Transformer Architectures”. (2020)



MLP-Mixer
𝒥!/#,! phase diagrams for 𝜇 = 1.0 and 𝜇 = 0.5; training accuracies on CIFAR10.

• 𝜇 = 1.0 case is everywhere-critical; while 𝜇 = 0.5 is not.
• As a result, 𝜇 = 1.0 trained well for all initializations; whereas 𝜇 = 0.5 deteriorates far from the critical line. 



Thank you!
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