
Thirty-seventh Conference on Neural Information Processing Systems

NeurIPS | 2023

Baixu Chen Mingsheng LongXimei WangJunguang Jiang Junwei Pan

Auxiliary-Task Learning (ATL)

Ø Aim to improve the performance of target tasks by leveraging
the useful signals provided by related auxiliary tasks.

Scene Understanding Semi-supervised Learning

Target Task:
Semantic Segmentation

Auxiliary Task:
Depth Estimation

Target Task:
Classification

Auxiliary Task:
Rotation Prediction

[1] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In CVPR 2018.
[2] Zhai X, Oliver A, Kolesnikov A, et al. S4l: Self-supervised semi-supervised learning. In ICCV 2019.

Negative Transfer in ATL

Ø The widely existing phenomenon where the introduced auxiliary tasks lead
to performance degradation.

Pairwise transfer learning results on DomainNet. 23 of
30 combinations lead to negative transfer (blue cell).

Negative transfer (red item) when
applying RLHF in GPT-4.

[1] OpenAI. Gpt-4 technical report, 2023

Overview of ATL Methods

Multi-task Architecture

Optimization Strategy

Explore task relationships by
grouping positively related tasks

together.
Complementary to our work.

Design architecture to facilitate
information sharing and
minimize task conflict.

Complementary to our work.

…TAG
2021

ATL Methods

Task Grouping

Taskonomy
2018

Our Focus

Improve optimization strategies
to reduce task conflict.

Extensively studied in both Multi-
task Learning and ATL literature.

…MTAN
2019

Cross-stitch, MMoE
2018

PLE
2020

Analysis on Negative Transfer
Problem Setup

Ø Learning Objective in ATL

Ø ℒ represents the loss function and 𝜆 is the relative weighting hyper-
parameter.

min
!
𝔼𝒯!"!ℒ#$# 𝜃 + 𝜆𝔼𝒯#$%ℒ%&' 𝜃

Target Task Auxiliary Task

Analysis on Negative Transfer
Problem Setup

𝑇𝐺 𝜆,𝒜 =𝒫 𝜃𝒜 𝒯)*) , 𝒯+,- , 𝜆 − 𝒫 𝜃 𝒯)*)

Model obtained with ATL method 𝓐 STL Model

Ø Transfer Gain

Ø 𝒫 represents the relative performance measure, where a higher 𝒫
indicates better performance.

Analysis on Negative Transfer
Problem Setup

Ø Weak Negative Transfer

Ø For some ATL algorithm 𝒜 with weighting
hyper-parameter 𝜆 , weak negative transfer
occurs if 𝑇𝐺 𝜆,𝒜 < 0.

Ø Strong Negative Transfer

Ø For some ATL algorithm 𝒜, strong negative
transfer occurs if max

"#$
𝑇𝐺 𝜆,𝒜 <0.

λ

TG

0
WNT

SNT

λ

TG

0
WNT

SNT

Analysis on Negative Transfer
Effect of Gradient Conflicts

Ø At each optimization step t, we have

𝜃)./ 𝜆 = 𝜃) − 𝜂(𝑔)*) 𝜃) + 𝜆𝑔+,- 𝜃))

Gradient of
Target Task

Gradient of
Auxiliary Task

Analysis on Negative Transfer
Effect of Gradient Conflicts

Ø It is widely believed the gradient conflict between 𝒈%&% and 𝒈'() will lead to
negative transfer, where the degree of conflict is measured by Gradient
Cosine Similarity.

Gradient Cosine Similarity
𝑐𝑜𝑠 𝜙

𝑔*+*

𝑔'()

𝜙

𝑔%&%

𝑔'()

𝜙

Gradient Conflict Occurs if
cos𝜙 < 0

Analysis on Negative Transfer
Effect of Gradient Conflicts

The correlation curve between Transfer Gain (TG) and Gradient Cosine Similarity (GCS) under different 𝜆.

Analysis on Negative Transfer
Effect of Gradient Conflicts

[Observation 1] Negative transfer is not necessarily caused by gradient conflicts and
gradient conflicts do not necessarily lead to negative transfer.

Analysis on Negative Transfer
Effect of Gradient Conflicts

Ø Moreover, it can be observed that the weighting hyper-parameter 𝜆 in ATL
has a large impact on negative transfer.

Ø Changing 𝜆 will not influence the gradient cosine similarity.

𝑔*+*

𝑔'()

𝜙

𝑔*+*

𝜆𝑔-./

𝜙

Analysis on Negative Transfer
Effect of Distribution Shift

𝒯01)23~ 1 − 𝑍 𝒯)*) + 𝑍𝒯+,- 𝑍~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(
𝜆

1 + 𝜆
)

Target Task Auxiliary Task Bernoulli Distribution

Ø Adjusting 𝜆 will change the data distribution that the model is fitting.

Ø Formula for Interpolated Distribution

Analysis on Negative Transfer
Effect of Distribution Shift

Ø Qualitative Measurement - t-SNE

t-SNE visualization of interpolated training distribution and target task test distribution with different 𝜆.

Analysis on Negative Transfer
Effect of Distribution Shift

Ø Quantitative Measurement - Confidence Score Discrepancy (CSD)

Ø Confidence score discrepancy indicates how unconfident the model is,
which is expected to increase when the data shift enlarges.

𝑑ℱ 𝐷,𝐷5 ≜ 1 − 𝔼-~7&max8∈𝒴𝑓7∗(𝑥, 𝑦)

Data from D’ Optimal Scoring
Function on D

Analysis on Negative Transfer
Effect of Distribution Shift

Ø Quantitative Measurement - Confidence Score Discrepancy (CSD)

The correlation curve between Transfer Gain (TG) and Confidence Score Discrepancy (CSD) with different 𝜆.

Analysis on Negative Transfer
Effect of Distribution Shift

[Observation 2] Negative transfer is likely to occur if the introduced auxiliary task
enlarges the distribution shift between training and test data for the target task.

ForkMerge Algorithm
Motivation

𝜃)./ 𝜆 = 𝜃) − 𝜂(𝑔)*) 𝜃) + 𝜆𝑔+,- 𝜃))

Gradient of
Target Task

Gradient of
Auxiliary Task

Ø [Optimization View] The gradient conflict between 𝑔%&% and 𝑔'() does not
necessarily lead to negative transfer.

Ø [Algorithm Design] Unlike prior works, our algorithm does not aim to
directly resolve gradient conflicts.

ForkMerge Algorithm
Motivation

Ø [Generalization View] Different 𝜆 will lead to diverse distribution shift,
resulting in different generalization performance.

Ø [Algorithm Design] In ForkMerge, we will dynamically adjust 𝜆 based on the
generalization performance on the validation set.

ForkMerge Algorithm
Algorithm

Ø Denote 6𝒫 the performance measure on the validation set, the learning
process can be formulated as a bi-level optimization problem.

𝜆∗ = argmax
<

J𝒫(𝜃)./) = J𝒫(𝜃) − 𝜂(𝑔#$# 𝜃) + λ𝑔%&' 𝜃)))

ForkMerge Algorithm
Algorithm

Ø Existing methods usually approximate 6𝒫 with the loss of a batch of data,
and then use first-order approximation to update 𝜆 (e.g. use Meta Learning).

𝜆∗ = argmax
<

J𝒫(𝜃)./) = J𝒫(𝜃) − 𝜂(𝑔#$# 𝜃) + λ𝑔%&' 𝜃)))

ForkMerge Algorithm
Algorithm

Ø Existing methods usually approximate 6𝒫 with the loss of a batch of data,
and then use first-order approximation to update 𝜆 (e.g. use Meta Learning).

Ø However, these approximations within a single step of gradient descent (1)
introduce large noise to the estimation of 𝜆 and also (2) increase the risk of
over-fitting the validation set.

𝜆∗ = argmax
<

J𝒫(𝜃)./) = J𝒫(𝜃) − 𝜂(𝑔#$# 𝜃) + λ𝑔%&' 𝜃)))

ForkMerge Algorithm
Algorithm

= argmax
"

6𝒫((𝜃% − 𝜂𝑔*+* 𝜃%) + λ(−𝜂𝑔-./ 𝜃%))

𝜆∗ = argmax
"

6𝒫(𝜃%12) = 6𝒫(𝜃% − 𝜂(𝑔*+* 𝜃% + λ𝑔-./ 𝜃%))

= argmax
"

6𝒫((1 − λ)(𝜃% − 𝜂𝑔*+* 𝜃%) + λ(𝜃% − 𝜂(𝑔*+* 𝜃% + 𝑔-./ 𝜃%)))

= argmax
"

6𝒫((1 − λ)𝜃%12(0) + λ(𝜃%12 1) // gradient descent

Ø By derivation, we obtain the equivalent optimization objective based on the
interpolation of model parameters.

ForkMerge Algorithm
Algorithm

𝜆∗ = argmax
<

J𝒫((1 − λ)𝜃)./(0) + λ(𝜃)./ 1)

Ø An accurate estimation in the above equation is computationally expensive
and prone to over-fit. Thus, we extend the one gradient step to ∆𝑡 steps.

𝜆∗ = argmax
<

J𝒫((1 − λ)𝜃).∆)(0) + λ(𝜃).∆) 1)

ForkMerge Algorithm
Algorithm

Merge

fork

Initial Parameter

Final Parameter

Fork

Independent
Optimization

min! ℒ"#"(&) min! ℒ"#" & + ℒ$%& &
Δ(× ∆(×

*
∆(×

&0 &0

&01∆0(0) &01∆0(1)

&01∆0∗

(1) Fork. The initial model will be copied into two independent branches with
the same parameters.

ForkMerge Algorithm
Algorithm

Merge

fork

Initial Parameter

Final Parameter

Fork

Independent
Optimization

min! ℒ"#"(&) min! ℒ"#" & + ℒ$%& &
Δ(× ∆(×

*
∆(×

&0 &0

&01∆0(0) &01∆0(1)

&01∆0∗(2) Optimize. The first branch is only optimized with the target task loss.
While the second branch is jointly optimized. Train for ∆𝑡 steps.

ForkMerge Algorithm
Algorithm

Merge

fork

Initial Parameter

Final Parameter

Fork

Independent
Optimization

min! ℒ"#"(&) min! ℒ"#" & + ℒ$%& &
Δ(× ∆(×

*
∆(×

&0 &0

&01∆0(0) &01∆0(1)

&01∆0∗

(3) Merge. Search for the optimal 𝜆∗ that
linearly combines two sets of parameters
to maximize the validation performance.

𝜆∗ = argmax
"

6𝒫((1 − λ)𝜃%1∆%(0) + λ(𝜃%1∆% 1)

Overall, the [Fork -> Optimize -> Merge]

loop is iterated for
!
∆#

times.

ForkMerge Algorithm
Extension to Multiple Auxiliary Tasks

Ø Learning Objective

min
>
λ?𝔼𝒯'ℒ? θ +N

@A/

B

λ@𝔼𝒯(ℒ@ θ ,N
@A/

B

λ@ ≤ 1

Target Task Auxiliary Tasks

Ø Similar to the case where there is only one auxiliary task, we outline the
following equivalent objective.

ForkMerge Algorithm
Extension to Multiple Auxiliary Tasks

Ø Equivalent Objective

Λ∗ = argmax
C

J𝒫 (N
@A?

B

Λ@ θ)./(𝜔@))

𝜔0@ = 𝕝 𝑖 = 𝑘 or 𝑖 = 0

Λ@ =
1 −N

0D?

λ0 , 𝑘 = 0

λ@ , 𝑘 ≠ 0

Ø The first branch is only optimized
with the target task loss.

Ø For other branches, each is jointly
optimized with the target task and
the 𝑘-th auxiliary task.

ForkMerge Algorithm
Extension to Multiple Auxiliary Tasks

Ø Equivalent Objective

Λ∗ = argmax
C

J𝒫 (N
@A?

B

Λ@ θ)./(𝜔@))

𝜔0@ = 𝕝 𝑖 = 𝑘 or 𝑖 = 0

Λ@ =
1 −N

0D?

λ0 , 𝑘 = 0

λ@ , 𝑘 ≠ 0
Ø Search for the optimal Λ∗ that

linearly combines the 𝐾 + 1 sets
of parameters to maximize the
validation performance.

ForkMerge Algorithm
General Form

VΛ∗ = argmax
EC

J𝒫 (N
FA/

G

VΛF θ).∆)(𝜈F))

Ø The general form has no constraints on the number of branches 𝐵 and the
task weighting vector 𝜈4.

ForkMerge Algorithm
General Form

VΛ∗ = argmax
EC

J𝒫 (N
FA/

G

VΛF θ).∆)(𝜈F))

Ø The general form has no constraints on the number of branches 𝐵 and the
task weighting vector 𝜈4.

Ø Allow us to introduce human prior into ForkMerge by constructing
more efficient branches.

ForkMerge Algorithm
General Form

VΛ∗ = argmax
EC

J𝒫 (N
FA/

G

VΛF θ).∆)(𝜈F))

Ø The general form has no constraints on the number of branches 𝐵 and the
task weighting vector 𝜈4.

Ø Allow us to introduce human prior into ForkMerge by constructing
more efficient branches.

Ø Provide possibilities for combining ForkMerge with previous task
grouping methods.

ForkMerge Algorithm
Discussion on Computation Cost

VΛ∗ = argmax
EC

J𝒫 (N
FA/

G

VΛF θ).∆)(𝜈F))

Ø The choice of the B implies a trade-off between performance and efficiency.
In practice, users may tailor 𝐵 to align with their computational resources.

Ø We have also developed several techniques to reduce computation cost such
as the pruning strategy and the greedy merging strategy. Please refer to our
paper for details.

Experiments
Main Results

Ø ForkMerge consistently achieves state-of-the-art performance across 4
benchmarks, including:

Ø Auxiliary-Task Scene Understanding (+4.03% v.s. previous SOTA +2.10%).

Ø Auxiliary-Domain Image Recognition (+2.00% over STL, while most existing
methods fail to improve performance).

Ø CTR and CTCVR Prediction (+1.30% v.s. previous SOTA +0.55%).

Ø Semi-Supervised Learning (SSL) (+46.3% v.s. previous SOTA + 43.2%).

Experiments
Analysis Experiments

Ø Effect of the merging step ∆𝑡.

(a) Segmentation (b) Depth (c) Normal

Choice of ∆t (Epochs)

Experiments
Analysis Experiments

Ø Importance of different forking branches during training.

(a) Segmentation (b) Depth (c) Normal

Branch 1 Branch 2 Branch 3

Seg

Seg + Dep

All

Dep

Dep + Nor

All

Nor

Nor + Dep

All

Experiments
Analysis Experiments

Ø Comparison with grid searching (top-right is better).

Ø Please refer to our paper for more analysis.

Thank You!
JiangJunguang1123@outlook.com

cbx_99_hasta@outlook.com

mailto:JiangJunguang1123@outlook.com

