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Auxiliary-Task Learning (ATL)

> Aim to improve the performance of target tasks by leveraging
the useful signals provided by related auxiliary tasks.

Scene Understanding Semi-supervised Learning

Target Task:
Classification

Target Task:
Semantic Segmentation

Auxtliary Task:

Auxiliary Task: Rotation Prediction

Depth Estimation

[1] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In CVPR 2018.
[2] Zhai X, Oliver A, Kolesnikov A, et al. S4l: Self-supervised semi-supervised learning. In ICCV 2019.



Negative Transfer in ATL

» The widely existing phenomenon where the introduced auxiliary tasks lead
to performance degradation.

Target Tasks Exam Base model RLHF model
|
f ) LSAT (MCQ) 67.0 % 72.0 %
¢c 1 P Q R S SAT EBRW - Reading Portion 92.3 % 90.4 %
20 SAT EBRW - Writing Portion 90.9 % 84.1 %
O - -09% -0.8% BUYAE-15% +0.7% 1 SAT Math (MCQ) 91.4 % 862 %
° Graduate Record Examination 575 % 67.5 %
0 | (GRE) Quantitative
# = -L0% - RR0n et L 10 Graduate Record Examination 87.5% 90.0 %
é 5 (GRE) Verbal
= A +1.4% -2.1% - BBEVA -15% -0.7% USNCO Local Section Exam 2022 51.7 % 63.3 %
B - AP Art History (MCQ) 72.5 % 662 %
q |9 B _ AP Biology (MCQ) 98.3 % 96.7 %
z ‘ - -5 AP Calculus BC (MCQ) 66.7 % 578 %
AP Chemistry (MCQ) 58.3 % 71.7%
R +1,8% +1.4% +13% = +0.7% 8 AP English Language and 55.6 % 51.1%
Composition (MCQ)
-15 . .
) o 160 510 _ AP English Literature and 63.6 % 69.1 %
L 9 +24% -1.6% -0.4% 2.1% Composition (MCQ)
>0 AP Environmental Science (MCQ) 72.5 % 67.5%
Pairwise transfer learning results on DomainNet. 23 of Negative transfer (red item) when
30 combinations lead to negative transfer (blue cell). applying RLHF in GPT-4.

[1] OpenAl. Gpt-4 technical report, 2023



Overview of ATL Methods

Task Grouping

Explore task relationships by
grouping positively related tasks
together.
Complementary to our work.

Taskonomy TAG
2018 2021

ATL Methods Multi-task Architecture
Design architecture to facilitate
information sharing and
minimize task conflict.

Cross-stitch, MMoE  MTAN Complementary to our work.

Improve optimization strategies
to reduce task conflict.

| Extensively studied in both Multi-

task Learning and ATL literature.



Analysis on Negative Transfer

Problem Setup

> Learning Objective in ATL

mein IETtgtLtgt(e) + A[ETaUXLaux (0)

h 4
Target Task Auxiliary Task

> L represents the loss function and A (s the relative weighting hyper-
parameter.



Analysis on Negative Transfer

Problem Setup

» Transfer Gain

TG(A»CA) =:P(Hc/l(7£gt:Taux'/1))_:P(H(g%gt))
— ——

Model obtained with ATL method A STL Model

> P represents the relative performance measure, where a higher P
(ndicates better performance.



Analysis on Negative Transfer

Problem Setup

> Weak Negative Transfer

» For some ATL algorithm A with weighting
hyper-parameter A, weak negative transfer
occurs if TG(A,A) < 0.

» Strong Negative Transfer

» For some ATL algorithm A, strong negative

transfer occurs if max TG(A4,A) <O.

TG

0




Analysis on Negative Transfer

Effect of Gradient Conflicts

» At each optimization step t, we have

0t+1(/1) =0, — n(gtgt(et) + ;Lgaux(gt))
—— —V—

Gradient of

Gradient of
Auxiliary Task

Target Task
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Analysis on Negative Transfer

Effect of Gradient Conflicts

> It is widely believed the gradient conflict between g4; and g 4, will lead to

negative transfer, where the degree of conflict is measured by Gradient
Cosine Simtlartity.

Gradient Cosine Similarity Gradient Conflict Occurs if
cos ¢ cospp <0
% b
- —
gaux gaux



Analysis on Negative Transfer

Effect of Gradient Conflicts

0.1 0.0 0.1 0.2 0.3 5301 00 01 02 03 04 205506 -0.002 0.002 0.006 -0.006  -0.002  0.002 0.006
GCS GCS GCS GCS
(2) Target: P (b) Target: Q (c) Target: P (d) Target: Q
Auxiliary: DomainNet Auxiliary: DomainNet Auxiliary: L2 Regularization Auxiliary: L2 Regularization

The correlation curve between Transfer Gain (TG) and Gradient Cosine Similarity (GCS) under different A.



Analysis on Negative Transfer

Effect of Gradient Conflicts

L]
0.1 0.0 0.1 0.2 0.3 -1 -02 -0.1 0.0 0.1 02 03 04 20 -0.006 -0.002 0.002 0.006 -0.006 -0.002 0.002 0.006
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(2) Target: P (b) Target: Q (c) Target: P (d) Target: Q
Auxiliary: DomainNet Auxiliary: DomainNet Auxiliary: L2 Regularization Auxiliary: L2 Regularization

[Observation 1] Negative transfer is not necessarily caused by gradient conflicts and
gradient conflicts do not necessarily lead to negative transfer.



Analysis on Negative Transfer

Effect of Gradient Conflicts

» Moreover, it can be observed that the weighting hyper-parameter A in ATL
has a large impact on negative transfer.

» Changing A will not influence the gradient cosine similartty.

Ytgt Itgt

— ———)

g aux Ag aux



Analysis on Negative Transfer

Effect of Distribution Shift

> Adjusting A will change the data distribution that the model is fitting.

» Formula for Interpolated Distribution

Tinter~(1 — Z)Tige + ZTqux Z~Bern0ulli(1 n /1)
W—J v \u N J

Target Task Auxiliary Task Bernoulli Distribution




Analysis on Negative Transfer

Effect of Distribution Shift

» Qualitative Measurement - t-SNE

A=0 A=1/16 A=1/8 A=1/4 A=1/2 A=1

t-SNE visualization of interpolated training distribution and target task test distribution with different A.



Analysis on Negative Transfer

Effect of Distribution Shift

» Quantitative Measurement - Confidence Score Discrepancy (CSD)

dr(D,D") £ 1 —E,_pmax,cyfp(x,y)
— ~~

Optimal Scoring

Data from D Function on D

» Confidence score discrepancy indicates how unconfident the model is,
which (s expected to increase when the data shift enlarges.



Analysis on Negative Transfer

Effect of Distribution Shift

» Quantitative Measurement - Confidence Score Discrepancy (CSD)

-10

TG (%)

-20

K
25164 132 1/16 ys 14 12 1 -8.0 o .

P (WNT) Q (SNT)

The correlation curve between Transfer Gain (TG) and Confidence Score Discrepancy (CSD) with different A.



Analysis on Negative Transfer

Effect of Distribution Shift

-10

TG (%)

-20

25 1/64 1/32 1/16 148 1/4 1/2 1 -8.0 35 1/64 1/32 1/16 1/8 1/4 12 1 -30

P (WNT) Q (SNT)

[Observation 2] Negative transfer is likely to occur if the introduced auxiliary task
enlarges the distribution shift between training and test data for the target task.



ForkMerge Algorithm

Motivation

Or1(1) = 0 — (g (0r) + 190ux(61))
—V— —V—

Gradient of Gradient of
Target Task Auxiliary Task

> [Optimization View] The gradient conflict between g;q; and ggq, does not
necessarily lead to negative transfer.

> [Algorithm Design] Unlike prior works, our algorithm does not aim to
directly resolve gradient conflicts.



ForkMerge Algorithm

Motivation

» [Generalization View] Different A will lead to diverse distribution shift,
resulting (n different generalization performance.

> [Algorithm Design] In ForkMerge, we will dynamically adjust A based on the
generalization performance on the validation set.



ForkMerge Algorithm

Algorithm

> Denote P the performance measure on the validation set, the learning
process can be formulated as a bi-level optimization problem.

A= arg}r{naxf’(@tﬂ) = jj(gt — n(gtgt(Ht) + AGaux(61)))



ForkMerge Algorithm

Algorithm
X = arg}rlnaxﬁ(é’m) = P (0 — 1(Grgt(0r) + Agaux(6)))

> Existing methods usually approximate P with the loss of a batch of data,
and then use first-order approximation to update A (e.g. use Meta Learning).



ForkMerge Algorithm

Algorithm

A= arg}rlnaxﬁ(é’m) = P(6; — 1(gegt(6) + Agaux(6:)))

» However, these approximations within a single step of gradient descent (1)
introduce large noise to the estimation of A and also (2) increase the risk of
over-fitting the validation set.



ForkMerge Algorithm

Algorithm

A= argﬁnaxﬁ(ﬁm) = P (6 — 1(gegt(0r) + Agaux(61)))

= argﬁnaxfﬁ((@t — NGt (0r)) + A(—1Gaux(61)))

: argﬁnaxfﬁ((l — (6 — 191t (6)) + A0 — 1(grgt(6r) + Faux(0))))
= al‘g;naxfﬁ (1 =2)041(0) + A(6¢41(1))

» By derivation, we obtain the equivalent optimization objective based on the
interpolation of model parameters.



ForkMerge Algorithm

Algorithm

A" = argmaxP ((1 = )0;41(0) + A(0;41 (1))
A

» An accurate estimation (n the above equation (s computationally expensive
and prone to over-fit. Thus, we extend the one gradient step to At steps.

A= argﬁnaxﬁ((l — MOt (0) + A(Op1nc(1))




ForkMerge Algorithm

Algorithm

Initial Parameter
[

v

[ Fork ]
Independent
Optimization

(1) Fork. The initial model will be copied into two independent branches with
the same parameters.




ForkMerge Algorithm

Algorithm

Initial Parameter
[

- : \
[ Fork ]

Independent
Optimization

)
)

[ mein Ltgt(e) ] [mé}n Ltgt(e) + Laux(e)]
At X

At X
Ot +n:(0)

£

(2) Optimize. The first branch is only optimized with the target task loss.
While the second branch is jointly optimized. Train for At steps.



ForkMerge Algorithm

Algorithm

(3) Merge. Search for the optimal 1* that
linearly combines two sets of parameters
to maximize the validation performance.

A" = al‘gﬁnaXﬁ (T =2)0¢1¢(0) + A(Be4ae (1))

Overall, the [Fork -> Optimize -> Merge]

T
loop s iterated for [A_J times.

Initial Parameter
[

y

Fork

Independent
Optimization

|

{

. X] [mein Ltgt(g) + Laux(g)x]

O¢+a:(0)

o3,
)
)
—t

(0]

[ s
N\
(Na)
\—r/

At

Merge

Final Parameter




ForkMerge Algorithm

Extension to Multiple Auxiliary Tasks

» Learning Objective

K K
mein }\OIETOLO (9) + Z }\k[ETk['k (9) ) Z }\k <1
k=1 k=1

\ J \ & J
Y
Target Task Auxiliary Tasks

» Similar to the case where there (s only one auxiliary task, we outline the
following equivalent objective.



ForkMerge Algorithm

Extension to Multiple Auxiliary Tasks
» Equivalent Objective

w¥ =1[i = kori=0] > The first branch is only optimized
with the target task loss.

> For other branches, each (s jointly
optimized with the target task and
the k-th auxiliary task.



ForkMerge Algorithm

Extension to Multiple Auxiliary Tasks

» Equivalent Objective

(
1—in, k=0
Ak:<

\ L#0 L > Search for the optimal A* that
Tk * linearly combines the K + 1 sets
of parameters to maximize the

K

A* = argmaxP (z L) validation performance.

A
k=0




ForkMerge Algorithm
General Form

B
N = argznaxf’ (z Ap Beine (V7))
A b=1

» The general form has no constraints on the number of branches B and the

task weighting vector v?.



ForkMerge Algorithm
General Form

B
N = argznaxf’ (z Ap Beine (V7))
A b=1

» Allow us to introduce human prior into ForkMerge by constructing
more efficient branches.



ForkMerge Algorithm
General Form

B
N = argznaxf’ (Z Ap Beine (V7))
A b=1

> Provide possibilities for combining ForkMerge with previous task
grouping methods.



ForkMerge Algorithm
Discussion on Computation Cost

B
N = aI‘g[naXf;B (z Ap Opac(v?))
A b=1

> The choice of the B implies a trade-off between performance and efficiency.
In practice, users may tailor B to align with their computational resources.

> We have also developed several techniques to reduce computation cost such
as the pruning strategy and the greedy merging strateqy. Please refer to our
paper for details.



Experiments

Main Results

» ForkMerge consistently achieves state-of-the-art performance across 4
benchmarks, including:

> Auxiliary-Task Scene Understanding (+4.03% v.s. previous SOTA +2.10%)).

> Auxtliary-Domain Image Recognition (+2.00% over STL, while most existing
methods fail to improve performance).

» CTR and CTCVR Prediction (+1.30% v.s. previous SOTA +0.55%).

» Semi-Supervised Learning (SSL) (+46.3% v.s. previous SOTA + 43.2%).



Experiments

Analysis Experiments

> Effect of the merging step At.

(a) Segmentation

Abs Err |

(b) Depth

1 3 10 30

Choice of At (Epochs)

232

23.0

N
>
)

22.6

(c) Normal




Experiments

Analysis Experiments

» Importance of different forking branches during training.

| Branch 1 “w== Branch 2 === Branch 3 :
1.0 1.0 1.0
0.8 Seg 0.8 Dep 0.8 Nor

Dep + Nor
Nor + Dep

All

50 100 ' 50 100 150 ' 100
Epochs Epochs Epochs

(a) Segmentation (b) Depth (c) Normal



Experiments .
> Please refer to our paper for more analysis.

Analysis Experiments

» Comparison with grid searching (top-right is better).
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