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» Nonlinear GCS: In generative compressed sensing (GCS) we seek
to recover a signal x that lies in a bounded k-input L-Lipschitz
generative models G(-) : B5(r) — R". We deal with a nonlinear
model y; = f;(a'x) with possibly discontinuous/unknown f;, which
captures 1-bit/multi-bit (dithered) quantization models and single
index model.

» A Uniform Recovery Framework: We build a unified framework to
establish uniform recovery guarantee for generalized Lasso.

» Near-Optimal Rate: Our main theorem shows that typically
O(%1log P(L)) (P(L) is a polynomial on L) measurements suffice for
uniform recovery of all x € Range(G) up to e-¢>-error, improving on
(Genzel and Stollenwerk, FOCM, 2023) for classical compressed
sensing (e.g., with sparse prior).

Problem Setup

» Nonlinear GCS model: (Assump. 1) G : Bi(r) — R" is L-Lipschitz
continuous, we observe y; = fi(a'x), i =1,...,m with a ~ A(0,L,).

» Discontinuous f;: (Assump. 2) We handle possibly unknwon f;
with countably infinite jump discontinuities that is piece-wisely
Lipschitz continuous, including (but far beyond) various quantization
models.

» Generalized Lasso: We achieve uniform recovery via
!
x = arg min ofly — Ax|l, s.t. xeT-K (1)

where K = G(B%(r)), T is a rescaling factor (to be chosen).

Technical Ingredients Needed For Uniform Recovery

» Lipschitz Approximation: (Assump. 3)
> We handle discontinuous f; by constructing its Lipschitz
approximation f;
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Figure 1:(Left): f; and its approximation f;5; (Right): approximation error <; o, |€;.0.5|-

> We define & s(a) = fisla) = Ta, eip(a ) fisla)
the bounds sup, i | s(a’ x) || 4, < A( and

SuDxer |1 52 %) |, < A,
> We also require bounds on sup, .k [£ s(a’x)| and sup, |€i s(a’ x)|,
but they can be crude ones and totally unproblematic.

— fi(a) and require

» Small Mismatch: (Assump. 4)
> The mismatch associated with the nonlinearity f;, defined as
p(x) = || Elfi(a] x)] — T
> The mismatch induced by the Lipschitz approximation f; 3, defined
as ps(x) = P(a'x € 95 + [-2,7]), where 2, is the set of
discontinuities of f;.

> We require sup,.x p(x) and sup,i \/115(x) to be O((A}" + AEJQ))\/%)

Master Theorem: Uniform Recovery with Sharp Rate

» Theorem 1 (Main Thm.): Under Assump. 1-4, given any ¢ € (0, 1),
if m 2> (Aél) +- A§2>)§P(L), then w.h.p. on a single draw of (a;, f;)",,
we have ||x — Tx||; < efor all x € I, where x is as per (1).

» Implications: We check Assump. 1-4 for specific models to get the

uniform sharp ¢, error rate O(\/’“Ogﬂf(”).

> 1-bit GCS: f;(-) = sign(-), recovering result from (Liu and Scarlett,
NeurlPS, 2020) without using local embedding property

> 1-bit Dithered GCS: f;(-) = sign(- + 7;) with uniform dither 7,
yielding more general results with guarantee comparable to (Qiu
et al., ICML, 2020)

> Lipschitz-continuous SIM: f;(-) is possibly unknown, random,
and Lipschitz continuous, improving result from (Liu and Scarlett,
NeurlPS, 2020) without using local embedding property

> Multi-bit Dithered GCS: f;(-) = Os(- + 7) with uniform dither 7,
yielding new result not available in the literature.

Prove Sharp Rate by Tighter Concentration Inequality

» Technical Challenges:
> Compared to non-uniform guarantee, proving a uniform guarantee
IS much more challenging. In particular, we need to bound the
product process taking the form

sup sup |h(a, x)a, v — E(h(a;, x)a;, v)] (2)
xeX ve)
> By Lipschitz approximation, we manage to render h(-) Lipschitz

continuous.

» The key to get sharp rate:

> |t's natural to use the concentration inequality due to (Mendelson,
2016) to bound (2), but this in general does not yield a sharp rate
but a rate of m~!/* instead, as per (Genzel and Stollenwerk,
FOCM, 2023)

> Qbserve that in the setting of GCS, X and V in (2) both possess
low metric entropy. By covering argument, we develop a
concentration inequality for product process that yields essentially
tighter bound in such setting.

» Theorem 2: (Tighter Bound on (2), informal and simplified) Let
x#(X,r) =log.v(X,r) be the metric entropy. Suppose that s» (X', r)
and .#(V, r) only logarithmically depend on r, then if
[h(a, %)y, < A1, |18 |lo, < As, then w.h.p. we can bound (2) as

A1A2\/ &, “);‘%ﬂ Virs), (We omit 1, ry since they have logarithmic
impact on the bound)

Numerical Results: Recovering Multiple Signals With One Design

» Reconstructed images and quantitative results of the MNIST
dataset for uniformly quantized CS with dithering measurements.
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