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Pareto Set Identification (PSI)

We are given K D-variates distributions (or arms) v, ..., vk with
means (resp.) p1, ..., ux € RP

+ iis dominated by j (or i < p)) if: ¥d € [D], p¢ < pf
+ define S* the set of non-dominated (or Pareto-optimal) arms
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Our contribution: a single sampling strategy to tackle the three
relaxations simultaneously.




Adaptive Pareto Exploration

Set Q := [K]? x [D] and define
+ confidence intervals [LY(t,8), U%(t,6)] st

P(Vt>1, V(i,j,d) € Q, (1 —puf) € [L(t,0), UA(t,0)]) >1—6
+ lower/upper CB on the "distance” between two arms i, j
M (i, t) = max L7,(t,6) and M* (i j, 1) == max Ui(t,0)
+ nearly optimal arms at time t

OPT*!(t) := {i € [K] : Vj # i, M (i,j,t) + &1 > 0}
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J#bt

Q by is the “most likely to be Pareto-optimal" in [K]\ OPT<! (1)
Q ¢ is the “most likely to be dominating (or close to)" by



Stopping and Recommendation
Letforalli € [K], 1

gi(t) == mg._x[— M*(i,j, )] and A7 (1) == m;nM—(i,j, t)+e1
Ikall JFEI

Qif gi(t) > 0 then i is not Pareto-optimal (w.h.p)
Qif h:*(t) > 0 then i is nearly Pareto-optimal (w.h.p)
Introduce

Z7'(t):= min (1) and Z;'(1) == min max(gi(0). " (1)

and let S(t) be the current empirical Pareto set
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Letforalli € [K], 1

gi(t) := mgx[— M*(i,j, )] and A7 (1) == m;nM—(i,j, t)+e1
Ikall JFEI

Qif gi(t) > 0 then i is not Pareto-optimal (w.h.p)
Qif n71(t) > 0then i is nearly Pareto-optimal (w.h.p)
Introduce

ZiH(t) = moin f] hit(t) and Z;'(t) := iergi(gcmax(gf(t),h?(t))

and let S(t) be the current empirical Pareto set

Stopping condition Recommendation Objective
Te, Z7N () >0 ANZSH () >0 S(1e,) U W(7e,) €1-PSI
Teren | 2102 () >0 ANZZV72 (1) >0 OPT®! (72, ,e0) (e1,€2)-PSI
K |OPT®™ (t)|> k OPT® l(Tk) £1-PSl-k

with W(t) := {i e S(r.,): Bj #i: M (i,j,7.,) < 0}



Experiments

We benchmarked our algorithms against the state-of-the art on
real-world and synthetic datasets
Real-world scenario (COV-BOOST trial (Munro et al. 2021)):

+ Arms: 20 covid vaccines

+ Measures: 3 immunogenicity indicators (2 indicators of
antibody and 1 of cellular response)
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Q k-relaxation reduces the sample complexity



Conclusion and Future Work

+ We proposed APE, an adaptive sampling rule that can be
coupled with different stopping rules

+ We proved the reductions in sample complexity brought by the
relaxations
+ We showcased the good performance of our algorithms
compared to the state-of-the-art
Future working directions include

+ Identify the Pareto set given a small budget

+ Use component-wise slack e := (¢!,...,<P)



