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Pareto Set Identification (PSI)

We are given K D-variates distributions (or arms) ν1, . . . , νK with
means (resp.) µ1, . . . ,µK ∈ RD

+ i is dominated by j (or µi ≺ µj ) if: ∀d ∈ [D], µd
i < µd

j

+ define S⋆ the set of non-dominated (or Pareto-optimal) arms

Goal: Given δ output Ŝτδ s.t P(τδ < ∞ and S⋆ ̸= Ŝτδ) ≤ δ

Possibly large sample complexity so we study relaxations

+ PSI-k : find k Pareto-optimal arms

+ (ε1)-PSI (Auer et al. 2016): output
Ŝ ⊃ S⋆ and Ŝ could contain some
green points

+ (ε1, ε2)-PSI: we are allowed to
return one arm in each cluster

+
++

++
+

Our contribution: a single sampling strategy to tackle the three
relaxations simultaneously.
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Adaptive Pareto Exploration
Set Ω := [K ]2 × [D] and define

+ confidence intervals [Ld
i,j(t , δ),U

d
i,j(t , δ)] s.t

P
(
∀t ≥ 1, ∀(i, j, d) ∈ Ω, (µd

i − µd
j ) ∈

[
Ld

i,j(t , δ),U
d
i,j(t , δ)

])
≥ 1− δ

+ lower/upper CB on the "distance” between two arms i, j

M−(i, j, t) := max
d

Ld
i,j(t , δ) and M+(i, j, t) := max

d
Ud

i,j(t , δ)

+ nearly optimal arms at time t

OPTε1(t) :=
{

i ∈ [K ] : ∀j ̸= i,M−(i, j, t) + ε1 > 0
}

Sampling rule: pull the least explored arm among bt and ct :

bt := argmax
i∈[K ]\OPTε1 (t)

min
j ̸=i

M+(i, j, t),

ct := argmin
j ̸=bt

M−(bt , j, t)

bt is the “most likely to be Pareto-optimal" in [K ]\OPTε1(t)
ct is the “most likely to be dominating (or close to)" bt
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Stopping and Recommendation

Let for all i ∈ [K ], ε1

gi(t) := max
j ̸=i

[−M+(i, j, t)] and hε1
i (t) := min

j ̸=i
M−(i, j, t) + ε1

if gi(t) > 0 then i is not Pareto-optimal (w.h.p)
if hε1

i (t) > 0 then i is nearly Pareto-optimal (w.h.p)
Introduce

Z ε1
1 (t) := min

i∈S(t)
hε1

i (t) and Z ε1
2 (t) := min

i∈S(t)c
max(gi(t), h

ε1
i (t))

and let S(t) be the current empirical Pareto set

Stopping condition Recommendation Objective
τε1 Zε1

1 (t) > 0 ∧ Zε1
2 (t) > 0 S(τε1 ) ∪ W (τε1 ) ε1-PSI

τε1,ε2 Zε1,ε2
1 (t) > 0 ∧ Zε1,ε2

2 (t) > 0 OPTε1 (τε1,ε2 ) (ε1, ε2)-PSI
τ k |OPTε1 (t)|≥ k OPTε1 (τ k ) ε1-PSI-k

with W (t) := {i ∈ S(τε1)
c : ∄j ̸= i :M+(i, j, τε1) < 0}
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Experiments

We benchmarked our algorithms against the state-of-the art on
real-world and synthetic datasets

Real-world scenario (COV-BOOST trial (Munro et al. 2021)):

+ Arms: 20 covid vaccines

+ Measures: 3 immunogenicity indicators (2 indicators of
antibody and 1 of cellular response)
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Conclusion and Future Work

+ We proposed APE, an adaptive sampling rule that can be
coupled with different stopping rules

+ We proved the reductions in sample complexity brought by the
relaxations

+ We showcased the good performance of our algorithms
compared to the state-of-the-art

Future working directions include

+ Identify the Pareto set given a small budget

+ Use component-wise slack ε := (ε1, . . . , εD)


