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Background: Why Graph Data Augmentation?

• Graph Neural Networks (GNNs) have shown promising capabilities in various 
graph-level classification tasks: 

• Yet GNNs still suffer from data insufficiency and perturbations

• Require the regularization of Graph Data Augmentation techniques:
• Fortify GNNs against potential noises and outliers underlying insufficient samples
• Enable more robust and representative feature learning

Molecular Property Prediction Social Network Classification



Challenges of Graph Data Augmentation

• Graphs are non-Euclidean data with distinctive properties:

• Require unique design to accommodate those properties

• GNNs map two intertwined yet complementary data spaces (i.e., graph signal and graph structure 
spaces) to an aligned representation space

• A good graph data augmentation method should consider augmenting both graph signal 
and graph structure spaces 
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Previous Works

• Existing research considers the augmentation in the graph signal space and 
structure space independently
• ifMixup[1] conducts Euclidean mixup in the graph signal space, yet fails to preserve key 

topologies of the original graphs.
• 𝒢-Mixup[2] realizes graph structure mixup based on the estimated graphons, yet fails to 

assign semantically meaningful graph signals.

• However, The graph signal and structure spaces are NOT isolated from each 
other, and there are strong entangling relations between them. 

A joint modeling of the interaction between graph signal and 
structure spaces is essential for graph data augmentation



Our Insights & Ideas

• Design a novel graph mixup method considering the interaction of graph signal 
and graph structure spaces to augment the input space

？

① A proper metric space modeling 
distances between graphs w.r.t. 

both signals and structures

② Seek a ‘midpoint’ of two 
samples in this metric space to 
perform mixup of two samples



Methods

• Fused Gromov-Wasserstein[3] Metric Space:
• We define an undirected attributed graph with a tuple 𝝁, 𝑿, 𝑨 :

① A proper metric space modeling 
distances between graphs w.r.t. 

both signals and structures

𝝁 ∈ ∆!: probability vector denoting the 
importance weights of nodes

𝑿 ∈ ℝ𝒏×𝒅: node feature matrix

𝑨 ∈ 𝕊𝒏(ℝ): symmetric structural relationship 
matrix (e.g., shortest path distance, 
adjacency, etc.)



Methods

• Fused Gromov-Wasserstein[3] Metric Space:
• We define an undirected attributed graph with a tuple 𝝁, 𝑿, 𝑨
• Fused Gromov-Wasserstein metric is formulated as an optimal transport problem optimizing 

the coupling 𝝅 ∈ Π 𝝁𝟏, 𝝁𝟐 ≔ 𝝅 ∈ ℝ#
𝒏𝟏×𝒏𝟐 	|	𝝅𝟏𝒏𝟐 = 𝝁𝟏, 𝝅&𝟏𝒏𝟏 = 𝝁𝟐  between nodes in a 

fused metric space considering the interaction of structure and signals at minimum 
alignment costs.

① A proper metric space modeling 
distances between graphs w.r.t. 

both signals and structures

signal space metric structure space metric



Methods

• Seek a synthetic graph /𝐺 at the ‘midpoint’ of source graphs 𝐺' and 𝐺(

• Traditional numeric solutions suffer high computation complexity. We enhance the computational 
efficiency by conducting Mirror Descent with a relaxed projection to polytope constraints: 

② Seek a ‘midpoint’ of two 
samples in this metric space to 
perform mixup of two samples

Alternately projecting to row and column 
marginal constraints instead of directly to the 
strict polytope constraint

✅ Faster Convergence

✅ Single-loop Algorithm

✅ Ensuring Estimation Accuracy



Experiments

• Qualitative Analysis:

+

𝐺1 𝐺2 /𝐺

✅ Overall trident structure reserved in 𝑮𝟏 ✅ Substructures from 𝑮𝟏 and 𝑮𝟐 are both adopted  
✅ Both topologically alike and highly consistent in node features (denoted with ID and colors)



Experiments

• Enhance GNN Performance
• Experiments conducted on five datasets and four GNN backbones with various SOTA graph 

data augmentation methods

✅ Enhance GNN Test-time Generalizability: Our methods consistently outperforms all SOTA 
augmentation methods under all settings



Experiments

• Enhance GNN Performance
• Randomly corrupts 20/40/60% of training graph labels (i.e., switching to another random label) 

✅ Enhance GNN Robustness: Resist label corruptions under various perturbation rates 



Experiments

• Computational Efficiency Improvements:
• Mixup clock time comparisons between FGWMixup using traditional solution and our 

accelerated version (FGWMixup*):

✅ Higher mixup efficiency: Up to 3.46× efficiency improvements 
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