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Background: Why Graph Data Augmentation?

e Graph Neural Networks (GNNs) have shown promising capabilities in various
graph-level classification tasks:

Molecular Property Prediction Social Network Classification

* Yet GNNs still suffer from data insufficiency and perturbations

* Require the regularization of Graph Data Augmentation techniques:
* Fortify GNNs against potential noises and outliers underlying insufficient samples

* Enable more robust and representative feature learning



Challenges of Graph Data Augmentation

* Graphs are non-Euclidean data with distinctive properties:

Irregular graph sizes Misaligned Nodes
Diverse Topologies

* Require unique design to accommodate those properties

* GNNs map two intertwined yet complementary data spaces (i.e., graph signal and graph structure
spaces) to an aligned representation space
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* A good graph data augmentation method should consider augmenting both graph signal
and graph structure spaces



Previous Works

» Existing research considers the augmentation in the graph signal space and
structure space independently

* ifMixup!! conducts Euclidean mixup in the graph signal space, yet fails to preserve key
topologies of the original graphs.

* G-Mixup!? realizes graph structure mixup based on the estimated graphons, yet fails to
assign semantically meaningful graph signals.

* However, The graph signal and structure spaces are NOT isolated from each
other, and there are strong entangling relations between them.

A joint modeling of the interaction between graph signal and
structure spaces is essential for graph data augmentation



Our Insights & Ideas

* Design a novel graph mixup method considering the interaction of graph signal
and graph structure spaces to augment the input space

() A proper metric space modeling
distances between graphs w.r.t.
both signals and structures
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Y ®) Seek a ‘midpoint’ of two
samples in this metric space to
perform mixup of two samples



() A proper metric space modeling
Methods distances between graphs w.r.t.
both signals and structures

* Fused Gromov-Wasserstein3 Metric Space:
* We define an undirected attributed graph with a tuple (i, X, A):

o) JNOXO,

X € R™4: node feature matrix

A € S, (R): symmetric structural relationship
matrix (e.g., shortest path distance,
adjacency, etc.)

1 € A,,: probability vector denoting the
importance weights of nodes



() A proper metric space modeling
Methods distances between graphs w.r.t.
both signals and structures

* Fused Gromov-Wasserstein3 Metric Space:
* We define an undirected attributed graph with a tuple (i, X, A)

* Fused Gromov-Wasserstein metric is formulated as an optimal transport problem optimizing

the coupling 1t € TI(uq, up) = {m € R1™2 | wl,, = py, ' 1, = I, } between nodes in a

fused metric space considering the interaction of structure and signals at minimum
alignment costs.
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@) Seek a ‘midpoint’ of two
Methods samples in this metric space to
perform mixup of two samples

* Seek a synthetic graph G at the ‘midpoint’ of source graphs G; and G,

arg  min MFGW (G, G1) + (1 — M) FGW(G, G»),
GE(Aﬁ,Rﬁxd,Sﬁ(R))

* Traditional numeric solutions suffer high computation complexity. We enhance the computational

efficiency by conducting Mirror Descent with a relaxed projection to polytope constraints:

Algorithm 2 FGWMixup,: Accelerated FGWMixup
1: Input: fi, G1 = (p1, X1, A1), G2 = (p2, X2, A2)
) ) 2: Optimizing: X € R"*? A € Sz(R), w1 € II(fi, p1), 72 € TI(j2, o).
Alternately projecting to row and column 3: for k in outer iterations and not converged do:

. oS . & GO = (3, X0, A)
ma_rgmal constraints m_stead of directly to the s D (d(X’(’“)[i],Xl[j])) D(k) (d(X - sz))
strict polytope constraint 6:  foriin{1,2) do e )
7: while not convergence do: > Solve arg min_ ) FGW(G ), Gy)
. . 8: f ) 11'( o) exp ( (4aA(k)7r§k)Ai —-(1- a)DEk))) l
SlngIE'IOOp Algorlthm 9: ( Z( ) diag(f. /7r n)ﬂ'(k)J > Bregman Projection on row constraint
v : P (4 A®rM A; - (1- o)D)
& Faster Convergence 0 Mo em oo (o 1
11: fk) ( )dlag(p, /7, (k) 1,,) ) > Bregman Projection on column constraint
Ensuring Estimation Accuracy S

- T T
14: UpdateA(’“Jrl)(— 1 (Aw§’“)A17r§’“) +(1-Nm (k)A ﬂ’(k) )

15: Update X (F+1) )\d1ag(1/u) M X1+ (1— N)diag(1/f)n k)Xg
16: end for
17: return G(k),y@ = Aye, + (1 — Nya,




Experiments

* Qualitative Analysis:

(c) ()
b { &
(b) (b)

1 _ (a)
‘ G

Overall trident structure reserved in G, Substructures from G, and G, are both adopted
Both topologically alike and highly consistent in node features (denoted with ID and colors)



Experiments

e Enhance GNN Performance

* Experiments conducted on five datasets and four GNN backbones with various SOTA graph

data augmentation methods

Methods
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74.93(3.02)
73.59(2.50)
74.48(2.91)
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74.76(3.71)
74.84(2.99)
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73.30(3.29)
73.20(5.58)
72.80(4.45)
72.40(5.14)
72.20(6.45)
73.40(5.12)
74.00(2.90)

49.00(2.64)
49.47(2.66)
49.80(3.29)
49.13(3.25)
49.07(3.16)
49.47(4.73)
49.80(2.63)
49.20(3.38)

49.47(3.76)
49.40(3.52)
50.00(3.41)
49.47(2.56)
49.73(4.67)
49.60(3.90)
50.80(4.06)
50.47(5.44)
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Graphormers

vanilla
DropEdge
DropNode
M-Mixup
G-Mixup
FGWMixup
FGWMixup.,

75.47(3.16)
75.20(4.02)
75.20(2.13)
75.11(3.78)
75.74(3.12)
76.82(2.35)
76.19(3.20)

76.01(2.02)
75.12(3.22)
76.28(3.49)
74.39(3.83)
74.85(3.52)
77.18(3.48)
76.46(3.41)

61.56(3.70)
63.07(3.21)
64.96(2.18)
62.31(3.48)
63.07(4.40)
66.45(2.58)
64.26(3.25)

77.49(2.01)
74.94(2.44)
76.20(1.95)
75.47(1.45)
76.06(3.12)
78.20(1.88)
76.62(3.06)

65.54(3.04)
66.73(3.50)
63.73(3.46)
66.54(2.70)
65.03(2.98)
67.36(3.21)
67.46(2.82)

74.99(1.23)
74.73(3.22)
74.78(2.07)
74.61(1.86)
74.90(2.04)
76.01(3.04)
75.45(1.80)

70.40(5.00)
71.10(5.65)
71.60(5.18)
71.10(4.83)
72.10(6.38)
72.60(5.08)
71.70(4.17)

71.50(4.20)
72.30(3.93)
71.30(5.18)
70.50(4.70)
71.10(5.01)
72.40(4.48)
71.90(4.35)

48.87(4.10)
49.60(4.09)
48.47(4.08)
49.67(4.25)
46.93(5.18)
49.73(3.80)
50.27(4.26)

47.47(2.98)
46.67(3.85)
47.67(2.83)
48.00(3.85)
46.80(4.41)
48.87(4.03)
48.53(2.95)

Enhance GNN Test-time Generalizability: Our methods consistently outperforms all SOTA
augmentation methods under all settings



Experiments

e Enhance GNN Performance

* Randomly corrupts 20/40/60% of training graph labels (i.e., switching to another random label)

Methods IMDB-B NCI1
20% 40% 60% 20% 40% 60%

vanilla 70.00(5.16) 59.70(5.06) 47.90(4.30) | 70.58(1.29) 61.95(2.19) 48.25(4.87)
DropEdge | 68.30(5.85) 59.40(5.00) 50.10(1.92) | 69.51(2.27) 60.32(2.60) 49.61(1.28)
M-Mixup | 70.70(5.90) 59.70(5.87) 50.90(1.81) | 71.53(2.75) 63.24(2.59) 48.66(3.02)
G-Mixup | 67.50(4.52) 59.10(4.74) 49.40(2.87) | 72.46(1.95) 63.26(4.39) 50.01(1.26)
FGWMixup | 70.10(4.39) 61.90(6.17) 50.80(3.19) | 72.92(1.56) 62.99(1.35) 50.12(3.51)
FGWMixup. | 70.80(3.97) 61.80(5.69) 51.00(1.54) | 72.75(2.29) 63.55(2.60) 50.02(3.38)

Enhance GNN Robustness: Resist label corruptions under various perturbation rates



Experiments

* Computational Efficiency Improvements:

* Mixup clock time comparisons between FGWMixup using traditional solution and our
accelerated version (FGWMixup*):

Avg. Mixup Time (s) / Fold
Datasets PROTEINS NCI1  NCI109 IMDB-B IMDB-M

FGWMixup 802.24 1711.45 1747.24  296.62 212.53
FGWMixup. 394.57 637.41 608.61 85.69 74.53
Speedup 2.03x 2.67x 2.74x 3.46 % 2.85%

Higher mixup efficiency: Up to 3.46x efficiency improvements
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