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Knowledge gaps

/Concept drift adaptation techniques are designed for evoIving\
tasks but only aim to learn the last task in the sequence

Continual learning technigues aim to learn the sequence of
tasks but are not designed for evolving tasks
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Key contributions

(Adapt to evolving tasks \

Effectively exploit forward and backward learning

Provide performance guarantees and analytically characterize

uhe increase in ESS J
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Incremental minimax risk classifiers

(IMRCs)

Uncertainty set
=k =k =k
U;7" = {pe A(X x V) : [Ep{®(z,y)} —T; | = Aj }
where & : X x )Y — R™ s a feature mapping
Tfk is the mean vector of expectation estimate

Af’“ is a confidence vector
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Learning

RUT" = min max 4(h,p)=minl — 7% p+ +ATH
' heT(X,Y) peus* (b, p) p i rTel) s

Prediction

j € arg max @ (z, y)
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Single task learning

Forward learning
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Performance guarantees and
effective sample size (ESS)
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Experimental results
e ‘ ‘ :

—— Forward n = 10

— Forward and backward n = 10
-& Forward n = 100
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Classification error/single-task

Number of tasks k

.18 + .03 .39 + .08 .69 + .05 .12 4+ .00 .36 £+ .06 .57+ .10

MER .16 = .03 .17 £ .03 .38 + .04 .17 + .09 .37 + .09 .10 + .03
ELLA 45 + .01 .48 * .05 .67 + .05 19 + .12 .48 £ .05 .61 + .03
CL-MRC .13 + .04 .15 + .03 .34 + .06 .10 + .01 .36 + .01 .09 + .03




