Small Total-Cost Constraints in Contextual Bandits with Knapsacks [CBwK], with Application to Fairness

Evgenii Chzhen - Christophe Giraud - Gilles Stoltz

Zhen Li

Neurips 2023

CBwK framework – Novelty is TB with components of order \sqrt{T}

Known: finite \mathcal{A} , rounds \mathcal{T} , average costs $\mathbf{B} \in [0,1]^d$

Unknowns:

Context distribution ν on \mathcal{X}

Scalar mean-payoff function $r: \mathcal{X} \times \mathcal{A} \rightarrow [0, 1]$

Vector-valued mean-cost function $\mathbf{c}: \mathcal{X} \times \mathcal{A} \rightarrow [-1, 1]^d$

For rounds $t = 1, 2, \dots, T$:

Observe context $\mathbf{x}_t \sim \nu$, and pick $a_t \in \mathcal{A}$

Get payoff r_t and costs \mathbf{c}_t with cond. exp. $r(\mathbf{x}_t, a_t)$ and $\mathbf{c}(\mathbf{x}_t, a_t)$

Goals (cf. fairness costs: $T\mathbf{B}$ as small as possible, possibly \sqrt{T})

Ensure
$$\sum_{t=1}^{T} c_t \leqslant T \mathbf{B}$$
 a.s. while maximizing $\sum_{t=1}^{T} r_t$

First reference for CBwK: Badanidiyuru, Langford, Slivkins [2014]

State of the art = TB at best $T^{3/4}$: Agrawal and Devanur [2016], Han et al. [2022]

Regret: Minimize
$$R_T = T \operatorname{opt}(r, \mathbf{c}, \mathbf{B}) - \sum_{t=1}^{T} r_t$$
 when

 $opt(r, \mathbf{c}, \mathbf{B})$

$$\begin{split} &= \sup_{\boldsymbol{\pi}: \mathcal{X} \to \mathcal{P}(\mathcal{A})} \left\{ \mathbb{E}_{\mathbf{X} \sim \nu} \left[\sum_{a \in \mathcal{A}} r(\mathbf{X}, a) \, \pi_{a}(\mathbf{X}) \right] : \quad \mathbb{E}_{\mathbf{X} \sim \nu} \left[\sum_{a \in \mathcal{A}} \mathbf{c}(\mathbf{X}, a) \, \pi_{a}(\mathbf{X}) \right] \leqslant \mathbf{B} \right\} \\ &= \sup_{\boldsymbol{\pi}: \mathcal{X} \to \mathcal{P}(\mathcal{A})} \inf_{\boldsymbol{\lambda} \geqslant \mathbf{0}} \, \mathbb{E}_{\mathbf{X} \sim \nu} \left[\sum_{a \in \mathcal{A}} r(\mathbf{X}, a) \, \pi_{a}(\mathbf{X}) + \left\langle \boldsymbol{\lambda}, \, \mathbf{B} - \sum_{a \in \mathcal{A}} \mathbf{c}(\mathbf{X}, a) \, \pi_{a}(\mathbf{X}) \right\rangle \right] \\ &= \min_{\boldsymbol{\lambda} \geqslant \mathbf{0}} \, \mathbb{E}_{\mathbf{X} \sim \nu} \left[\max_{a \in \mathcal{A}} \left\{ r(\mathbf{X}, a) - \left\langle \mathbf{c}(\mathbf{X}, a) - \mathbf{B}, \, \boldsymbol{\lambda} \right\rangle \right\} \right] \end{split}$$

 \rightarrow Suffices to learn r and c, as well as λ^*

Learn r and c: via structural assumptions; uniform bounds

Linear model: Agrawal and Devanur [2016], based on LinUCB from Abbasi-Yadkori et al. [2011]. Logistic model: Li and Stoltz [2022], based on Logistic-UCB1 from Faury et al. [2020].

Target:
$$\operatorname{opt}(r, \mathbf{c}, \mathbf{B}) = \min_{\lambda \geqslant 0} \mathbb{E}_{\mathbf{X} \sim \nu} \left[\max_{a \in \mathcal{A}} \left\{ r(\mathbf{X}, a) - \left\langle \mathbf{c}(\mathbf{X}, a) - \mathbf{B}, \lambda \right\rangle \right\} \right]$$

 \rightarrow Gradient descent on dual / best response for primal var.

Algorithm with fixed step size γ

For t = 1, 2, ..., T:

- $\begin{aligned} &1. \text{ Play } a_t \in \underset{a \in \mathcal{A}}{\arg\max} \Big\{ \widehat{r}_{t-1}(\mathbf{x}_t, a) \big\langle \widehat{\mathbf{c}}_{t-1}(\mathbf{x}_t, a) (\mathbf{B} b\mathbf{1}), \ \boldsymbol{\lambda}_{t-1} \big\rangle \Big\} \\ &2. \text{ Make gradient step } \boldsymbol{\lambda}_t = \Big(\boldsymbol{\lambda}_{t-1} + \gamma \big(\widehat{\mathbf{c}}_{t-1}(\mathbf{x}_t, a) (\mathbf{B} b\mathbf{1}) \big) \Big)_{\perp} \end{aligned}$
- 3. Update estimates \hat{r}_t and $\hat{\mathbf{c}}_t$ of functions r and \mathbf{c}

Analysis

Cost margin Tb, of order $(1 + ||\lambda^*||)/\gamma$; adds $||\lambda^*|| (Tb + \sqrt{T})$ to regret \rightarrow Oracle choice $(1 + \|\lambda^{\star}\|)/\sqrt{T}$ for γ , leads to $(1 + \|\lambda^{\star}\|)\sqrt{T}$ regret

Reminder of the issue: oracle choice $(1 + ||\lambda^*||)/\sqrt{T}$ for γ

Typical bypass by estimating $\|\lambda^{\star}\|$ on \sqrt{T} preliminary rounds (see, e.g.: Agrawal and Devanur [2016], Han et al. [2022]) leads to min $\mathbf{B} \geqslant T^{-1/4}$

Theorem

Algorithm based on a careful doubling trick $\gamma_k = 2^k/\sqrt{T}$ W.h.p.: controls cumulative costs & regret of order $(1 + \|\lambda^\star\|)\sqrt{T}$ Only requires min **B** to be larger than $1/\sqrt{T}$ up to poly-log terms

Note 1: if null-cost action, $\|\lambda^*\| \leqslant \frac{2 \operatorname{opt}(r, \mathbf{c}, \mathbf{B})}{\min \mathbf{B}} = \text{usual bound}$

Note 2: explicit, closed-form bounds in the article

Note 3: fairness example from Chohlas-Wood et al. [2021]