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CBwK framework – Novelty is TB with components of order
√
T

Known: finite A, rounds T , average costs B ∈ [0, 1]d

Unknowns:
Context distribution ν on X
Scalar mean-payoff function r : X ×A → [0, 1]
Vector-valued mean-cost function c : X ×A → [−1, 1]d

For rounds t = 1, 2, . . . ,T :
Observe context xt ∼ ν, and pick at ∈ A
Get payoff rt and costs ct with cond. exp. r(xt , at) and c(xt , at)

Goals (cf. fairness costs: TB as small as possible, possibly
√
T )

Ensure
T∑
t=1

ct ⩽ T B a.s. while maximizing
T∑
t=1

rt

First reference for CBwK: Badanidiyuru, Langford, Slivkins [2014]

State of the art = TB at best T 3/4: Agrawal and Devanur [2016], Han et al. [2022]



Regret: Minimize RT = T opt(r , c,B)−
T∑
t=1

rt where

opt(r , c,B)

= sup
π:X→P(A)

{
EX∼ν

[∑
a∈A

r(X, a)πa(X)

]
: EX∼ν

[∑
a∈A

c(X, a)πa(X)

]
⩽ B

}

= sup
π:X→P(A)

inf
λ⩾0

EX∼ν

[∑
a∈A

r(X, a)πa(X) +

〈
λ, B−

∑
a∈A

c(X, a)πa(X)

〉]

= min
λ⩾0

EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)− B, λ

〉}]
→ Suffices to learn r and c, as well as λ⋆

Learn r and c: via structural assumptions; uniform bounds

Linear model: Agrawal and Devanur [2016], based on LinUCB from
Abbasi-Yadkori et al. [2011]. Logistic model: Li and Stoltz [2022], based
on Logistic-UCB1 from Faury et al. [2020].



Target: opt(r , c,B) = min
λ⩾0

EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)− B, λ

〉}]
→ Gradient descent on dual / best response for primal var.

Algorithm with fixed step size γ

For t = 1, 2, . . . ,T :

1. Play at ∈ argmax
a∈A

{
r̂t−1(xt , a)−

〈
ĉt−1(xt , a)− (B−b1), λt−1

〉}
2. Make gradient step λt =

(
λt−1 + γ

(
ĉt−1(xt , a)− (B− b1)

))
+

3. Update estimates r̂t and ĉt of functions r and c

Analysis

Cost margin Tb, of order
(
1 + ∥λ⋆∥

)
/γ; adds ∥λ⋆∥

(
Tb +

√
T
)
to regret

→ Oracle choice
(
1 + ∥λ⋆∥

)
/
√
T for γ, leads to

(
1 + ∥λ⋆∥

)√
T regret



Reminder of the issue: oracle choice
(
1 + ∥λ⋆∥

)
/
√
T for γ

Typical bypass by estimating ∥λ⋆∥ on
√
T preliminary rounds (see, e.g.:

Agrawal and Devanur [2016], Han et al. [2022]) leads to minB ⩾ T−1/4

Theorem

Algorithm based on a careful doubling trick γk = 2k/
√
T

W.h.p.: controls cumulative costs & regret of order
(
1 + ∥λ⋆∥

)√
T

Only requires minB to be larger than 1/
√
T up to poly-log terms

Note 1: if null-cost action, ∥λ⋆∥ ⩽
2 opt(r , c,B)

minB
= usual bound

Note 2: explicit, closed-form bounds in the article

Note 3: fairness example from Chohlas-Wood et al. [2021]


