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Expressiveness of GNNs

GNNs learn incomplete graph invariants

-  MPNNs are bounded by 1-WL

G Go
Expressiveness comes at a computational cost kq I:I

- Higher order GNNs
Indistinguishable by 1-WL

Efficient algorithms for planar graph isomorphism exist

- Weinberg, 1968: Triconnected planar graphs in O(|V|?)
- Tarjan & Hopcroft, 1971: Extend to all planar graphs



Can we efficiently learn complete planar graph invariants?



The PlanE framework

A. Input Graph

B. Block-Cut Tree

C. SPQR Trees
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BasePlanE: a simple instance of PlanE

TriEnc:

BiEnc:

CutEnc:
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BasePlanE: a simple Instance of PlanE

The runtime of one BasePlanE layer is O(|V|d*), with a one-off pre-processing of O(|V|?).

BasePlane requires a logarithmic number of layers:

Theorem 6.1. For any planar graphs G = (V1,E1,(1) and Gy = (Va, Es,(2), there exists a
parametrization of BASEPLANE with at most L = [log,(max{|V1|,|V2|})] + 1 layers, which

computes a complete graph invariant, that is, the final graph-level embeddings satisfy zg’l) 7= zg;) if
and only if G| and G4 are not isomorphic.



Empirical Evaluation



Expressiveness experiments: EXP & P3R

We evaluate on EXP consisting of planar graphs representing SAT instances.

We propose a new synthetic dataset P3R:
Learning the equivalence classes of 3-regular planar graphs with 10 nodes.

EXP PIR
Model Accuracy (%) Model A (D)
GCN 50.0=+0.00
GCN-RNI(N)  98.0+1.85 gligN i})'(ly 00
3-GCN 99.7+0.004 0.00

BASEPLANE  100-0.00 BASEPLANE 100 +0.00




Structure detection experiment: QM9 .

We evaluate the ability of detecting structural graph information without explicit access to the
target structure. The task we propose is:

Given a subset of graphs from QM?9, predict the graph-level clustering coefficient (CC).
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Scalability experiment: TIGER

BasePlanE manages to scale to large planar graphs, while competitive models suffer from
memory constraints.

BASEPLANE PPGN ESAN
Dataset #Nodes Pre. Train Pre. Train Pre. Train

TIGER-Alaska-2K 2000 98sec O0.1sec 34sec 59sec 4.6sec 87.73 sec
TIGER-Alaska-10K 10000 50sec 0.33sec OOM OOM OoOOM OoOOM
TIGER-Alaska-93K 93366 3.7h’s 2.2 sec OOM OOM OOM OOM




Real-world dataset: QM9

Property R-GIN R-GAT R-SPN BASEPLANE
base +FA base +FA k=25 k=10

mu 2.64+0.11 2.5440.00 2.68+0.11 2.73+0.07 2.16+008 2.21+021 1.97+0.03
alpha 4.67+052  2.2840.04 4.65+0.44 2.32+016 1.74+0.05 1.66+006 1.63+0.01
HOMO 1.42+0.01 1.264+0.02 1.4840.03 1.434+002 1.19+004 1.20+0.08 1.15+0.01
LUMO 1.50+0.00 1.34+0.04 1.53+0.07 1.41+0.03 1.13+001 1.204+0.06 1.06+0.02
gap 2.27+0.00  1.96+0.04 2.31+0.06 2.08+0.05 1.76+0.03 1.77+0.06 1.73+0.02
R2 15.63+1.40 12.61+0.37 52.39+42.5 15.76+1.17 10.59+035 10.63+1.01 10.53+0.55
ZPVE 12.93+1.81 5.03+0.36 14.87+2.88 5.98+0.43 3.16+0.06 2.58+0.13 2.81:0.16
[8[0) 0.88+1.01 2.21+0.12 7.61+0.46 2.1940.25 1.10+0.03 0.89+0.05 0.95+0.04
U 18.71+23.36 2.32+0.18 6.86+0.53 2.11+0.10 1.0940.05 0.93+0.03 0.94-+0.04
H 5.62+081  2.26+0.19 7.64+0.92 2.27+029 1.10+0.03 0.92+0.03 0.92+0.04
G 5.38+0.75  2.04+0.24 6.54+0.36 2.07+0.07 1.04+0.04 0.83+0.05 0.88+0.04
Cv 3.53+0.37  1.86+0.03 4.11+to0.27 2.03+0.14 1.34+0.03 1.23+0.06 1.20z+o0.06
Omega 1.05+0.11  0.80+0.04 1.48+0.87 0.73+0.04 0.53+0.02 0.52+0.02 0.45+0.01




Real-world datasets: ZINC & MolHIV

ZINC(12k) ZINC(12k) ZINC(Full)
Edge Features No Yes Yes
GCN 0.278+0.003 - -
GIN(-E) 0.387+0.015 0.252+0.014 0.088+0.002
PNA 0.320+0.032 0.188+0.004 0.320+0.032
ESAN - 0.102+0.003 -
GSN 0.140+0.006 0.101+0.010
CIN 0.115+0.003 0.079-+0.006 0. 022i0 002
HIMP - 0.151+0.006 0.036+0.002

(E-)BASEPLANE 0.124+0.004 0.076+0.003 0.028+0.002

MolHIV (OGB)
GCN 75.58+0.97
GIN 77.07+1.40
PNA 79.05+1.32
ESAN 78.00+1.42
GSN 80.39+0.90
CIN 80.94+0.57
HIMP 78.80+0.82

E-BASEPLANE

80.04+0.50




Summary and outlook

We propose PlanE as a framework for planar representation learning, and we show that the
BasePlanE instance can learn complete graph invariants over planar graphs.

We evaluate BasePlanE on synthetic datasets for expressiveness (EXP & P3R), scalability
(TIGER-Alaska), and detecting structural information (QM9_..).

We show that BasePlanE is competitive on molecular real-world datasets (QM9, Zinc,
MolHIV).

Implementation: https://github.com/ZZYSonny/PlanE
Paper: https://arxiv.org/abs/2307.01180



https://github.com/ZZYSonny/PlanE
https://arxiv.org/abs/2307.01180

