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TL:DR

« Influence Function (IF) and its approximations suffer from high computational cost and framework
dependency. Furthermore, we find & prove that these methods suffer from a distributional bias due

to their bilinear form.

- To mitigate this issue, we propose a novel IF approximation method with Geometric Ensemble.

« We empirically verify that the proposed method performance and
relieves the framework dependency of IF (and its approximations).
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1. Introduction

* Influence Function (IF)
« Two limitations of IF




Influence Function

- Approximating the counterfactual effect of removing training samples
« Measures how the leave-one-out (LOO) retraining of a training sample changes the loss of each
sample. (similar to Cook’s distancell in robust statistics)
« The sign determines whether the training sample is beneficial, and the scale measures its impact.
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Influence Function

- Approximating the counterfactual effect of removing training samples

The Leave-One-Out (LOO) retraining effect of training Since retraining is computationally intractable, [2]
sample z € § on another instance z’ € RP proposed an efficient approximation,
named Influence Function (IF):
/ / / —
Troo(z,2") == €(2,0,) — £(2,07) I(z,2') =g/ H g,
ERM solution This can be interpreted as a two-step approximation of
Q* -— argmin L(S7 9) retraining effect
OER” Loss linearization
Retrained parameter Tuoo(z, 7)) ~ 623 (2,67) — flin (2, 6%)
T
£(z,0) = 9. (0F — 6)

0> .= argmin L(S,0) —
HERP N ~ g, H g, =1(z,7)

Newton ascent step
1LILAB



Influence Function

- Approximating the counterfactual effect of removing training samples
- Used to noisy label detectionl2 3.4l and dataset pruningt® ©l,

AUC : 0.9924, AP : 0.9577
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e clean 92 = 7 S GO
j corrupted ~ o N F-score
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Noisy label detection Dataset pruning
High self-influence indicates memorization. Low self-influence indicates prunable.
(easily generalizable)
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Two limitations of IF

- Limited problem structures and applications

 |F assumes standard supervised learning settings.

« Therefore, formulation & intuition (e.g., interpretations of sign & scale of influence) cannot be generalized to the
Generative models!. 121, Self-Supervised Learning, and Graph Neural Networksl7. 131,

6 £0 67 &G | FiE
S§976 <3P
yuzygscsh

Counterfactual effect of
removing edges?

(e) CIFAR (lowest self-inf) (f) CIFAR-Airplane (lowest self-inf)

High self-influence samples are hard to recognize or high-contrast.
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Two limitations of IF

- High computational cost and framework dependency

« |Fisstill intractable to modern NN architectures (e.g., ResNetl2'l and Transformerl22]) due to Hessian computation.
Therefore, IF requires further approximations (e.g., stochastic conjugate gradient!?], sub-curvature
approximation['4], random projection(3]).

« The Jacobian-vector product (JVP), which is only efficient for packages that support forward-mode auto-
differentiation (AD), is used for the batch computation of IF (and its approximations).

Y, Y4

A Ny

"'w

Random Projectionl’5! can accelerate the computation of IF. A framework supports forward-mode AD (JAX)
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2. Identifying distributional bias in IF and its approximations

- Distributional bias in IF and its approximations
- A simple case study in a modified two-circle dataset




Distributional bias in IF and its approximations

- Efficient approximations of Influence Function

Tracln & TracInRP B! Arnoldi 4]
* By replacing the expensive inverse Hessian as By using the spectral decomposition of
an identity matrix, Tracln approximates IF as Hessian, Arnoldi approximates IF with principal
Trraca(2,2') = C Z 95 9 COmponem;:imcipal eigenvectors of Hessian
Take average over checkpoints Tarnoldi (z, z’) =g, URA 1 UR g

* Instead, the performance of Tracln is

_ _ Principal eigenvalues of Hessian
replenished by multiple checkpoints along

trajectory. « They use Arnoldi4' iteration to estimate
 Further efficiency can be obtained by using principal components.
random projection. * Note that IF, Tracln(RP), and Arnoldi are all
bilinear w.r.t. sample-wise gradients.
ITracInRP Z Z = C Z g QRQRgz g °

Random prOJection matrix (P x R) MLILADB



Distributional bias in IF and its approximations

- Consequently, self-influence estimated by these methods is quadratic for sample-wise gradients.

10° E
103 —
102 —

10° z

Randomly projected gradients
and the results of normality test

Proposition 3.1 (Distributional bias in bilinear self-influence). Let us as-
sume g, follows a P-dimensional stable distribution (e.g., Gaussian, Cauchy, and
Lévy distribution) and M € RF*F is a positive (semi-)definite matrix. Then,
self-influence in the form of Zy/(z, z) = g M g. follows a unimodal distribution.
Furthermore, if g, follows a Gaussian distribution, then the self-influence follows
a generalized y?-distribution.
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A simple case study in a modified two-circle dataset

- To verify that this bias can hurt the separability of typical and influential samples, we consider the
following setting.
- We add 10 influential training samples at the center of the two-circle dataset (30 typical samples per circle).
* J100 - High influential samples form a separate mode of high self-influence.
« J: For both damping scales, influential samples are mixed with typical samples due to the distributional bias of the
bilinear form.

H(a) =H + ol

Damping scale

AUC : 1.0000, AP : 1.0000 AUC : 0.9950, AP : 0.9769 AUC : 0.9850, AP : 0.9406

influential

15-
oo e 00 U et — 10! -. —y = e
. nfluentiat influential influential
® A A O 0 I
05- o —
.. A A .. 10t
o9 Y
> 00- .:A A:.
[ ] [ ]
os- 0 %4 Al
L] ..A A.. [ ]
.. [ XY X ..
-10- ®oe0®
“15- ! )

10° - i ! , Em, 100 EESNEEEES EaEs sees 0090 100 SEEEE 0000 = SR
0.0 0.5 . 1.5 2.0 2.5 8

Three-circle dataset Z100 A (Oz = 1()()) A (a = 0.01)

OMLILAB

aaaaaaaaa ing & Intellig e



3. Resolving distributional bias via Geometric Ensemble

- Step 1. Removing linearization
- Step 2. Utilization of Geometric Ensemble
- Empirical evaluations




Removing Linearization

- Key Idea 1: Removing Linearization

- To mitigate the distributional bias in IF, we propose an alternative view of IF through Laplace

Approximation.

Theorem 4.1 (Connection between IF and LA). Z in [28] can be expressed
as

I(2,2") = Eppy, [ALG2(2,0) - ALy (2, 9)]
Linearized  where AGI(2,4)) := £40(z,4)) — i (2, 0%) = g (¢ — 0*) and pyy is the Laplace

loss deviation  approximated posterior

R Curvature term is dominant
pua(¥) :=N ($16", ™) - (or uninformative prior)

- By using (Algs(z,7) := L(z,¢) — £(z,07)), we have

Tia(2,2) 1= Eyrpyy [Aloe (2, 8) - Al (', 9)]

o
[+]
achine Learn
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Utilization of Geometric Ensemble

- Key Idea 2: Replace Laplace Approximation to Geometric Ensemble (GE)
- While 7; 4 does not suffer from the distributional bias in theory, it still mixes typical and influential
(memorized) samples and even underperforms its liner counterpart.

AUC : 0.0700, AP : 0.0847 AUC : 0.0000, AP : 0.0822 AUC : 0.6333, AP : 0.1877 AUC : 0.7233, AP : 0.2330
1.

) typical typical typical 10 - typical

x10° - influential 10! - influential 10* - influential - influential

X 10[) -
x 100 -

N w s o

x 100 -

100 - 10° - 10° - 100 -

2 4 6 8 1.3501.3751.4001.4251.4501.4751.5001.525 02 04 06 08 10 12 14 16 02 04 06 08 10 12 1.4
lell le6 le—4

ILA (Oé — 001) ILA (CM = 100) ILA (R = 50) T (R = 50)

- This performance drop is originated from singularity of Hessian for over-parameterized NNs.

Proposition (Hessian singularity for over-parameterized NNs). Let us as-
sume a pre-trained parameter 0* € RY achieves zero training loss L(S,0*) = 0
for squared error. Then, H has at least P — N K zero-eigenvalues for NNs such
that NK < P. Furthermore, if x is an input of training sample z € .S, then the The Singularity does not affect

following holds for the eigenvectors {w;}_ n i1 linearized NNs, but it severely

g9, ui =V l(z,6%) Vg f(z,0%)u; =0 degrade original NNs.
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Utilization of Geometric Ensemble

- Key Idea 2: Replace Laplace Approximation to Geometric Ensemble (GE)
- Consequently, we modify the parameter distribution as follows:

Tia(z,2') = By [l (2,9) - Alo- (2, 9)].

IGEX(Z7 Z/) — EQPNPGE [AEG* (Za ¢) ) Ag@* (Z/7 ¢)]

Empirical distribution of Geometric Ensemblel42]
(Fine-tuning trajectory of SGD)

- By this modification, GEX
1. can capture the local geometry around 0*similar to LA,
2. can avoiding overestimating loss deviations caused by the singularity of the Hessian.
(+ GE finds diverse & low loss checkpoints around 6* [42]. Therefore, GE does not yield underfitting issues.)

OMLILAB
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Utilization of Geometric Ensemble

- Pseudocode of GEX

Algorithm 2 7y
1: Imput: training data S, pre-trained parameter 6™, number of LA samples M, number of fine-tuning steps 7,
two data samples z, 2’
2;
3: # Generating Geometric Ensemble (GE; [16]) Pure post-hoc implementation
4: for m = 1,..., M (This computation can be parallelized for multiple devices) do
5:  Initialized the m-th checkpoint 8%, < 6* (or 6%, _;)
6: fort=1,...,Tdo
1 Apply stochastic optimization update (e.g., SGD with momentum): 6%, < 0%, !
8:  end for{End fine-tuning the m-th checkpoint 6L}
9: end for{End generation of GE {6, }2/_,}
1(1):  ———— T Does not require forward-mode AD!
: # Compute the non-linear IF approximation Framework indebendent
12: Zeex(z,2') « M| [Alg«(2,0F) - Alo- (2, 67,)] ( P )

. Output: Zeex(z, 2')

(OMLILAB
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Empirical evaluations

- Treatment of Noisy label detection
- GEX can distinguish mislabeled samples better than other influence-based methods on both synthetic
and real-world label noisel*9l.
- Otsu algorithml'8lis used to find a threshold between noisy and clean labels.
- For relabeling, we follow the relabeling function in [20].
- Metrics

- Noisy label detection: Area under the ROC curve (AUC), Average Precision (AP)
- Noisy label relabeling: Test accuracy after relabeling.

Synthetic label noise Real-world label noise ‘ Synthetic label noise Real-world label noise
CIFAR-10 CIFAR-100 CIFAR-10-N CIFAR-100-N CIFAR-10 CIFAR-100 ‘ CIFAR-10-N  CIFAR-100-N
- Clean label acc. | 95.75+0.06 79.08+0.05 | 95.75+0.06  79.08 +0.05
Detection method | AUC AP |  AUC AP | AUC AP | AUC AP Noisy label acc. | 90.94%0.15 72.35+0.17 | 68.63£0.32  55.50 +0.09
Deep-KNN 92.51+£0.19 69.93+071 | 84.00+0.14 40.17+£0.23 | 78.32£0.19 72.60+0.33 | 71.59£0.21 59.76 +0.25 Detection method | Relabeled acc.
cL 57.60£0.30 1627020 | 84.16£0.10 3576+0.50 | 75.94£0.02 66.50 +0.09 | 69.49 +0.15 58.69 +0.23
Deep-KNN 91.58 +0.10 66.12+0.27 | 69.12 £0.25 50.03 £0.19
F-score 7334+£0.07 16.27+0.09 | 59.18+021 11.04+0.05 | 69.39+0.06 52.89+0.06 | 68.95+0.11 52.29 +0.14 e STI1L000 T355501% | 365 a00y 33 17L003
EL2N 98.29+£0.03 95.82+0.06 | 9642 +0.05 73.82+0.42 | 93.57+0.17 91.26+0.13 | 84.65+0.08 77.26 +0.06 Fscore | 78944039 58674018 | 53.50+028 44344021
T il 6270£0.19 17.90+0.17 | 79.96+0.32 2625+0.47 | 56.75+038 4561038 | 67.25£0.09 54.14£0.09 ELeH SS0S0I0 OLISE0IE | OOl SlRs020
Tenia 89.89 4321 75.53 22.25 76,48 64.69 68.91 55.86 - 90982009 T242%0.16 | G55 0.17 35472008
Dhractiis 80.56+0.14 4426+037 | 7499025 21.62+0.26 | 77.24+045 65.17+0.68 | 69.04 +0.28 56.41 +0.31 Tractn : : : -

] TrracInRP 90.82 +0.06 71.70+0.15 | 68.12+0.23  55.20 +£0.06
;A 61.64£0.13 17.05+0.18 | 77.20£0.35 22.61 £0.42 | 56.83 +0.40 45.63 +0.40 | 66.57 +0.12 53.26+0.11 Deact 0822006 TIT02013 ) 68122023 55.20+0.06
A 64.11£0.34 18.34+0.36 | 76.06 £0.36 22.26+0.47 | 56.88 +0.29 45.67 +0.33 | 65.68+0.15 52.66+0.13 . SL00=016 T0DRL010 | BRal008 551001

T 99.74+0.02 98.31+0.06 | 99.33£0.03 96.08+0.12 | 96.20 +0.03 94.89 +0.04 | 89.76 +0.01 86.30  0.01 T ‘ A 008 TR AL 010 T3 L02AT E I E 0D

Results on noisy label detection Results on noisy label relabeling
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Empirical evaluations

- Dataset pruning
- GEX can detect low self-influence samples that can be pruned.
- Note that among the influence-based methods, only GEX is comparable to the SOTA methods, F-score
and EL2N.

- Metrics
« Test accuracy after pruning the fixed number of samples.

EL2N
TracInRP 7
s EL2N o F-score 8
o F-score > §7
g Arnoldi g 9 TracInRP 5
o) [}
$o RandProj S g,
@ % ° 7 N, F-score
o : ™ Rand i TracInRP
N andom racin
Random % RandProj Arnoldi
®  Arnoldi EangPrOJ
andom
10000 15000 20000 25000 000 EL2N
Pruned data Pruned data Pruned data

MNIST CIFAR-10 CIFAR-100
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4. Discussion points




Conclusion and Future directions

- Conclusion
» Bilinear form of influence approximation severely restrict the expressivity of influence distribution.
» Removing this restriction can enhance the separability of influence and improve the performance of downstream tasks.
* Furthermore, the proposed method can be implemented in purely post-hoc manner and does not require forward-mode AD.

- Future directions: Understanding the evolution of Sharpness & Influence Function
* As shownin Theorem 4.1, IF is closely related to the Laplace Approximation.,
» Onthe other hand, [23] formalized the relationship between sharpness and Laplace Approximation through PAC-Bayes.
« Although there is criticism that sharpness is not directly related to generalizationt?4], an accurate understanding of the evolution
(dynamics) of sharpness will help clarify the relationship between sharpness and generalization.
» Recent works on Edge-of-Stability (EQS)12>26. 27]would be a good starting point.

(a) Mean Squared Error (MSE) loss (b) Cross entropy loss
250
[ S e
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Loss & Sharpness in NNs(24]

o
[+]
achine Learning & Intelligence



Thank you !

Any Questions ?
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