9
. -".Tté;'\'"
£) & ﬁ P30 :
) at X Jr \ 2° " NEURAL INFORMATION
A 3 . > T o%}-.. PROCESSING SYSTEMS
Ts555 PEKING UNIVERSITY "i.k‘. .
[}

Rewiring Neurons in Non-Stationary Environments

Zhicheng Sun, Yadong Mu
Peking University, Beijing, China

INntroduction

Problem description
* Continual reinforcement learning!™ concerns learning over non-stationary environments

* |t requires our policy network to quickly adapt to environmental changes®! while not
catastrophically forgetting!®! the learned policy

tinyfeet moon carrystuff_hugegravity tinyteet_moon

[1] Mark B Ring. “Continual learning in reinforcement environments”. PhD thesis, University of Texas at Austin, 1994.
[2] Khimya Khetarpal, Matthew Riemer, Irina Rish et al. “Towards Continual Reinforcement Learning: A Review and Perspectives”. JAIR, 2022, 75: 1401-1476.
[3] Michael McCloskey and Neal J Cohen. “Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem”. Psychology of Learning and Motivation, 1989, 24: 109-165.

INntroduction

. . b
Motivation
* Continual reinforcement learning requires the policy Weight change
network to quickly adapt to new environments!!] .
Cc
/ . .
* We are inspired by the brain’s remarkable adaptivity ArRgEhade
by rewiring itselfl?l and seek to incorporate a similar -
process into the policy network Wiring change or
d weight change?
Wiring change

4

[1] Khimya Khetarpal, Matthew Riemer, Irina Rish et al. “Towards Continual Reinforcement Learning: A Review and Perspectives”. JAIR, 2022, 75: 1401-1476.
[2] Dmitri B Chklovskii, BW Mel and K Svoboda. “Cortical Rewiring and Information Storage”. Nature, 2004, 431(7010): 782-788.

Method

Rewiring via permutation

* By exploiting the layered structure of the network, it fully reuses existing synapses to achieve
structural plasticity in continual learning

O reuse weights

> AL
e
ONONORORONNONONO,
permute neurons by (12)(345) t=0 t=1

(a) Synaptic level (b) Network level

Method

Rewiring via permutation

* Rewire between layers by permuting hidden neurons
Y:WLOO'OPL_1WL_10...0(TOP1W1X.

end-to-end learnable via differentiable sorting!!!
P, =1[z,:], =z = argsort(yv;),
—d (sort(v;)17, lvlT))

T

P; = softmax

Advantages: highly parameter-efficient, exploit numerous
structural variations

[1] Sebastian Prillo and Julian Eisenschlos. “SoftSort: A Continuous Relaxation for the argsort Operator”. In: ICML. 2020: 7793-7802.

sort

sort

Method

Rewiring for exploration

* Maintain a set of wirings and randomly sample from these
wirings at each step to generate diverse policies

Pre{P1,Pis,...,Pik}.

* Distill knowledgel!! across wirings for knowledge sharing SO s S S< o s

Lia.(W, P) = Bew [D (mie C19) || me(:15))] Eas Beas Zose

[1] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. “Distilling the Knowledge in a Neural Network”. arXiv preprint arXiv:1503.02531, 2015.

Method

Rewiring for exploration

* Maintain a set of wirings and randomly sample from these
wirings at each step to generate diverse policies

Pre{P1,Pis,...,Pik}.

KL divergence

* Distill knowledgel!! across wirings for knowledge sharing

L (W, P) = Epsx [DKL (7Tk'(‘|S) || 7Tk('|S))] ’

200

175

150

125

100

)

50

25

w/™\an A A i
NWWALAWAN AN M

W AMAASAMANAAMAAN A AN

w/o LKL
w/ LKL

0 JU
0 200k 400k 600k

Step of interaction

[1] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. “Distilling the Knowledge in a Neural Network”. arXiv preprint arXiv:1503.02531, 2015.

800k

Method

Rewiring for stability-plasticity

* Cache each learned wiring while regularizing the weight

1 2 t—1
changes L
Lieg(W') =) |Wf = W% — -
* Jointly refine the wiring and the weights to align with each y
align
other. Y=...0o00PP"'P/T W o.. X.
e t

adapters on P; -1

L
Lsp(W', P, P") =) ||W} = P/W;~'P[T,|I”.
=1

Experiments

* Average performance (1) and model size (]) on Brax scenariosl4!

Method HalfCheetah Ant Humanoid
Performance Model size Performance Model size Performance Model size

FT-1 0.62 £+ 0.29 1.0 0.52 £+ 0.26 1.0 0.71 = 0.07 1.0
FT-L2 0.38 &= 0.15 2.0 0.78 = 0.20 2.0 0.68 = 0.28 2.0
PackNet [41] 0.85 +£0.14 2.0 1.08 &+ 0.21 2.0 0.96 = 0.21 2.0
EWC [33] 043 +0.24 3.0 0.55 +0.24 3.0 0.94 + 0.01 3.0
PNN [54] 1.03 +0.14 8.0 0.98 = 0.31 8.0 0.98 + 0.26 4.0
SAC-N 1.00 £ 0.15 8.0 1.00 £+ 0.38 8.0 1.00 &+ 0.29 4.0
FI-N 1.16 &= 0.20 8.0 0.97 = 0.20 8.0 0.65 = 0.46 4.0
CSP [20] 1.27 + 0.27 54 1.11 + 0.17 3.9 1.76 = 0.19 34
Ours 1.17 £ 0.15 2.1 1.22 + 0.11 2.1 1.78 £+ 0.22 2.0

[1] Jean-Baptiste Gaya, Thang Doan, Lucas Caccia et al. “Building a Subspace of Policies for Scalable Continual Learning”. In: ICLR. 2023.
[2] C Daniel Freeman, Erik Frey, Anton Raichuk et al. “Brax—A Differentiable Physics Engine for Large Scale Rigid Body Simulation”. arXiv preprint arXiv:2106.13281, 2021.

* Performance-size tradeoffs on the HalfCheetah scenarios

Performance

Experiments

1.2

1.0

0.8

0.6

0.4

> 4 0 @

FT-1
FT-L2
PackNet
EWC
PNN
SAC-N
FT-N
CSP
Ours

Model size

(a) HalfCheetah scenarios

Performance

1.4

1.0

0.8

0.6

<@

% *

FT-1
PackNet
PNN
SAC-N
FT-N
CSP
CSP-S
Ours
Ours-L

4
Model size

(b) HalfCheetah/forgetting scenario

Experiments

* Evolution of performance in the first stage of HalfCheetah/forgetting scenario

Reward

4k

3k

2k

Ours
! A y
. Ny
}‘ Rewire Ours
e
v FT "X Ours w/o Lkr,
200k 400k 600k 800k 200k 400k 600k 800k

Step of interaction

(a) Effectiveness of rewiring and multi-mode

Step of interaction

(b) Effectiveness of the distillation loss Lk,

Thanks for listening

Code Is available at https://github.com/feifeiobama/RewireNeuron

https://github.com/feifeiobama/RewireNeuron

