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INntroduction

Problem description
* Continual reinforcement learning!™ concerns learning over non-stationary environments

* |t requires our policy network to quickly adapt to environmental changes®! while not
catastrophically forgetting!®! the learned policy
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[1] Mark B Ring. “Continual learning in reinforcement environments”. PhD thesis, University of Texas at Austin, 1994.
[2] Khimya Khetarpal, Matthew Riemer, Irina Rish et al. “Towards Continual Reinforcement Learning: A Review and Perspectives”. JAIR, 2022, 75: 1401-1476.
[3] Michael McCloskey and Neal J Cohen. “Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem”. Psychology of Learning and Motivation, 1989, 24: 109-165.



INntroduction

. . b
Motivation
* Continual reinforcement learning requires the policy Weight change
network to quickly adapt to new environments!!] .
Cc
/ . .
* We are inspired by the brain’s remarkable adaptivity ArRgEhade
by rewiring itselfl?l and seek to incorporate a similar -
process into the policy network Wiring change or
d weight change?
Wiring change
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[1] Khimya Khetarpal, Matthew Riemer, Irina Rish et al. “Towards Continual Reinforcement Learning: A Review and Perspectives”. JAIR, 2022, 75: 1401-1476.
[2] Dmitri B Chklovskii, BW Mel and K Svoboda. “Cortical Rewiring and Information Storage”. Nature, 2004, 431(7010): 782-788.



Method

Rewiring via permutation

* By exploiting the layered structure of the network, it fully reuses existing synapses to achieve
structural plasticity in continual learning

O reuse weights
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(a) Synaptic level (b) Network level



Method

Rewiring via permutation

* Rewire between layers by permuting hidden neurons
Y:WLOO'OPL_1WL_10...0(TOP1W1X.

end-to-end learnable via differentiable sorting!!!
P, =1[z,:], =z = argsort(yv;),
—d (sort(v;)17, lvlT))

T

P; = softmax

Advantages: highly parameter-efficient, exploit numerous
structural variations

[1] Sebastian Prillo and Julian Eisenschlos. “SoftSort: A Continuous Relaxation for the argsort Operator”. In: ICML. 2020: 7793-7802.
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Method

Rewiring for exploration

* Maintain a set of wirings and randomly sample from these
wirings at each step to generate diverse policies

Pre{P1,Pis,...,Pik}.

* Distill knowledgel!! across wirings for knowledge sharing SO s S S< o s

Lia.(W, P) = Bew [ D (mie C19) || me(:15))] Eas Beas Zose

[1] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. “Distilling the Knowledge in a Neural Network”. arXiv preprint arXiv:1503.02531, 2015.



Method

Rewiring for exploration

* Maintain a set of wirings and randomly sample from these
wirings at each step to generate diverse policies

Pre{P1,Pis,...,Pik}.

KL divergence

* Distill knowledgel!! across wirings for knowledge sharing

L (W, P) = Epsx [DKL (7Tk'(‘|S) || 7Tk('|S))] ’
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[1] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. “Distilling the Knowledge in a Neural Network”. arXiv preprint arXiv:1503.02531, 2015.
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Method

Rewiring for stability-plasticity

* Cache each learned wiring while regularizing the weight

1 2 t—1
changes L
Lieg(W') = ) |Wf = W% — -
* Jointly refine the wiring and the weights to align with each y
align
other. Y=...0o00PP"'P/T W o.. X.
e t

adapters on P; -1

L
Lsp(W', P, P") = ) ||W} = P/W;~'P[T,|I”.
=1



Experiments

* Average performance (1) and model size (]) on Brax scenariosl4!

Method HalfCheetah Ant Humanoid
Performance Model size Performance Model size Performance Model size

FT-1 0.62 £+ 0.29 1.0 0.52 £+ 0.26 1.0 0.71 = 0.07 1.0
FT-L2 0.38 &= 0.15 2.0 0.78 = 0.20 2.0 0.68 = 0.28 2.0
PackNet [41] 0.85 +£0.14 2.0 1.08 &+ 0.21 2.0 0.96 = 0.21 2.0
EWC [33] 043 +0.24 3.0 0.55 +0.24 3.0 0.94 + 0.01 3.0
PNN [54] 1.03 +0.14 8.0 0.98 = 0.31 8.0 0.98 + 0.26 4.0
SAC-N 1.00 £ 0.15 8.0 1.00 £+ 0.38 8.0 1.00 &+ 0.29 4.0
FI-N 1.16 &= 0.20 8.0 0.97 = 0.20 8.0 0.65 = 0.46 4.0
CSP [20] 1.27 + 0.27 54 1.11 + 0.17 3.9 1.76 = 0.19 34
Ours 1.17 £ 0.15 2.1 1.22 + 0.11 2.1 1.78 £+ 0.22 2.0

[1] Jean-Baptiste Gaya, Thang Doan, Lucas Caccia et al. “Building a Subspace of Policies for Scalable Continual Learning”. In: ICLR. 2023.
[2] C Daniel Freeman, Erik Frey, Anton Raichuk et al. “Brax—A Differentiable Physics Engine for Large Scale Rigid Body Simulation”. arXiv preprint arXiv:2106.13281, 2021.



* Performance-size tradeoffs on the HalfCheetah scenarios

Performance

Experiments
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Experiments

* Evolution of performance in the first stage of HalfCheetah/forgetting scenario
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Thanks for listening

Code Is available at https://github.com/feifeiobama/RewireNeuron



https://github.com/feifeiobama/RewireNeuron

