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Background: Neural Collapse

Supervised training of DNNs for classification tasks can be
formulated as an Empirical Risk Minimization (ERM) problem:

R̂(Θ) = min
Θ

1

N

N∑
i=1

L(ψΘ(Xi ),Yi ). (1)

Here:

▶ Xi ∈ Rd0×N ,Yi ∈ RC×N represent the input and label
matrices.

▶ ψΘ : Rd0 → RC is an overparameterized feed-forward DNN.

▶ L : RC × RC → R is the loss function (cross-entropy, MSE)

Training beyond zero-classification error, towards zero R̂(Θ) (a.k.a
Terminal Phase of Training (TPT)) leads to the “Neural Collapse”
phenomenon!
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Visualizing Neural Collapse

NC is characterized by four properties (NC1-4) pertaining to the
penultimate layer features and the final layer classifier.

(a) (b)

Figure 1: Penultimate layer features and final layer classifier: VGG13 + 3 classes from CIFAR10 [Papyan et.al 2020]
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Feature means and covariances

For all “balanced” classes c ∈ [C ] and data points i ∈ [n] within a
class, the penultimate layer features are denoted as hc,i ∈ RdL−1 .

class means: µc =
1

n

n∑
i=1

hc,i

global mean: µG =
1

C

C∑
c=1

µc

within class covariance: ΣW =
1

Cn

C∑
c=1

n∑
i=1

(
(hc,i − µc)(hc,i − µc)

⊤)
between class covariance :ΣB =

1

C

C∑
c=1

(
(µc − µG )(µc − µG )

⊤)
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Properties of Neural Collapse: NC1

NC1: Collapse of Variability: For all classes c ∈ [C ] and data
points i ∈ [n] within a class, the penultimate layer features
hc,i ∈ RdL−1 collapse to their class means µc = 1

n

∑n
i=1 hc,i .

NC1 :=
1

C
tr{ΣWΣ†

B} → 0 (2)
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Properties of Neural Collapse: NC2

NC2: Preference towards a simplex ETF: The re-centered class
means µc − µG ,∀c ∈ [C ] are equidistant and equiangular from
each other. Formally, matrix M ∈ RC×dL−1 with columns
µc−µG

∥µc−µG∥2
∈ RdL−1 ,∀c ∈ [C ] represents a simplex ETF.

NC2 :=

∥∥∥∥ MM⊤

∥MM⊤∥F
− 1√

C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥
F

→ 0 (3)
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Properties of Neural Collapse: NC3

NC3: Self-dual alignment: The last-layer classifier W ∈ RC×dL−1 is
in alignment with the simplex ETF of M (up to rescaling) as:

W

∥W∥F
=

M

∥M∥F

NC3 :=

∥∥∥∥ WM⊤

∥WM⊤∥F
− 1√

C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥
F

→ 0 (4)
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Properties of Neural Collapse: NC4

NC4: Choose the nearest class mean: for any new test point xtest ,
the classification result is determined by: argminc∈[C ] ∥htest − µc∥2.
During training, one can track this property on X as a sanity check.

NC4 :=
1

Cn

C∑
c=1

n∑
i=1

I(argmaxc′∈[C ](⟨wc′ , hc,i ⟩+bc′) ̸= argminc′∈[C ] ∥hc,i − µc′∥2) → 0.

(5)
Here I(.) is the indicator function and bc ∈ R is the c th element of bias vector.
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Experimental results

Figure 2: NC1-4: ResNet18 + CIFAR10 [Zhu et.al 2021]

Figure 3: NC1 for VGG, ResNet, DenseNet on various datasets [Papyan et.al 2020]
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Benefits!

▶ Better in-distribution generalization!

▶ Improved robustness to adversarial examples!

▶ Reduction in training time by fixing the last layer linear
classifier as simplex ETF!

▶ Improved performance on imbalanced datasets by fixing the
last layer linear classifier as simplex ETF!

▶ ... so on

How can we form a theoretical understanding of this phenomenon?
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NC theory: Unconstrained Features Model for DNNs

▶ Under the assumption that the DNN is expressive enough to
reach TPT, the “Unconstrained Features Model (UFM)” peels
away the first ‘L-1’ hidden layers.

▶ The penultimate layer features are treated as freely optimizable!

▶ An idealistic model to explain neural collapse.

Figure 4: Unconstrained Features Model for CNN (left) and MLP (right) [Kothapalli 2023]
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Theoretical Formulation of UFM

Consider the ERM with MSE loss and regularization as follows:

R̂(W,H) :=
1

2N
∥WH− Y∥2F +

λH
2

∥H∥2F +
λW
2

∥W∥2F (6)

This setup has been studied extensively by previous works (see
references in paper) and has been shown that any minimizer
(W∗,H∗) exhibits neural collapse.

a

b
c

d

e

f

DNN : UFM NC
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Connectivity between data points and GNNs

What if structural connectivity exists between data points?

▶ How can we modify the UFM in graph settings?

▶ Do GNNs exhibit NC?

a

b
c

d

e

f

GNN : ? ?
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Community detection on SSBM graphs

▶ We consider the task of detecting communities/clusters in
sparse Symmetric Stochastic Block Model (SSBM) graphs.

▶ SSBM graphs are random graphs where nodes belonging to the
same cluster are connected with a probability p and nodes
belonging to different clusters are connected with probability q.

▶ We sample K random SSBM graphs {Gk = (Vk , Ek)}Kk=1, each

with N nodes, C clusters, p = a logN
N , q = b logN

N (regime of
exact recovery).

p

p

q

p
q

pa

b
c

d

e

f
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Supervised community detection with GNNs

▶ For a GNN ψΘ, the ERM for supervised community detection
can be given as:

R̂ = min
Θ

1

K

K∑
k=1

L(ψΘ(Gk), yk) +
λ

2
∥Θ∥2F , (7)

where L is based on MSE:

L(ψΘ(Gk), yk) = min
π∈SC

1

2N
∥ψΘ (Gk)− π (yk (Vk))∥22 . (8)

▶ The performance is measured using “overlap”:

overlap(ŷ , y) := max
π∈SC

(
1

N

N∑
i=1

δŷ(vi ),π(y(vi )) −
1

C

)
/

(
1− 1

C

)
(9)

Here π indicates permutations over the labels (communities).
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GNN formulations

▶ For a GNN ψF
Θ with L layers, the node features H

(l)
k ∈ Rdl×N

at layer l ∈ [L] is given by:

X
(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k ),

(10)

where H
(0)
k = Xk , and σ(·) represents a point-wise activation

function such as ReLU. W
(l)
1 ,W

(l)
2 ∈ Rdl×dl−1 are the weight

matrices and Âk = AkD
−1
k is the normalized adjacency matrix,

also known as the random-walk matrix.

▶ A simpler variant ψF ′
Θ is given by:

X
(l)
k = W

(l)
2 H

(l−1)
k Âk ,

H
(l)
k = σ(X

(l)
k ).

(11)
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Experimental results: GNN

Figure 5: GNN ψF
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

Figure 6: GNN ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

The extent of reduction in NC1 is ‘less’ when compared to the DNN case!
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Structural condition for collapsed minimizers

By treating {H(L−1)
k }Kk=1 as freely optimizable variables, the

empirical risk based on the gUFM can be formulated as follows:

R̂F′
(W2, {Hk}Kk=1) :=

1

K

K∑
k=1

(
1

2N

∥∥∥W2Hk Âk − Y
∥∥∥2
F
+
λHk

2
∥Hk∥2F

)
+
λW2

2
∥W2∥2F

(12)

Theorem 3.1

Consider the gUFM with K = 1 and denote the fraction of neighbors of node

vc,i that belong to class c ′ as scc′,i =
|Nc′ (vc,i )|
|N (vc,i )|

. Let the condition C based on

scc′,i be given by:

(sc1,1, · · · , scC ,1) = · · · = (sc1,n, · · · , scC ,n), ∀c ∈ [C ]. (C)

If a graph G satisfies condition C, then there exist minimizers of the gUFM that
are collapsed (w.r.t NC1). Conversely, when either

√
λHλW2 = 0, or√

λHλW2 > 0 and G is regular (so that Â = Â⊤), if there exists a collapsed
non-degenerate minimizer of gUFM, then condition C necessarily holds.
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cond (C): graph view

▶ Homophilic neighborhoods (p > q) satisfying cond (C).

▶ Heterophilic neighborhoods (q > p) satisfying cond (C).

▶ Note that the Â = Â⊤ condition is only an artifact of the proof
and not a blocker for empirical analysis.

▶ Previous works (for ex: Ma et.al) have empirically shown good
GNN performance on heterophilic graphs with structure
approximately satisfying cond (C). We provide an
optimization-based theory for such behaviour.
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cond (C): matrix view

▶ Recall that the computation graph is defined by Â = AD−1.

▶ The value

scc ′,i =
|Nc ′(vc,i )|
|N (vc,i )|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.

Â =


· · · · · ·

· · · · · ·

 , =⇒ 1⊤ = s11, 1
⊤ = s12,∀i ∈ [n]

▶ The same applies to all nodes in class c = 2. Straightforward
to extend this to C > 2 settings.
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▶ The value

scc ′,i =
|Nc ′(vc,i )|
|N (vc,i )|

represents the sum of the column slice corresponding to
neighbors from class c ′ for a node vc,i .

▶ For ex: Let C = 2 with n nodes in each class. Consider the
column shown below corresponds to a node from class c = 1.
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Minimizer Conjecture

Conjecture 3.1

Consider the gUFM with K = 1 and condition C as stated in
theorem 3.1. The minimizers of the gUFM are collapsed (w.r.t NC1)
iff the graph G satisfies condition C.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 22 / 34

https://arxiv.org/abs/2307.01951


Sampling SSBM graphs satisfying cond (C)

What is the probability of sampling a random SSBM graph that
satisfies cond (C)? A: practically 0

Theorem 3.2

Let G = (V, E) be drawn from SSBM(N,C , p, q). For N >> C , we
have

P (G obeys C) <

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

. (13)

Numerical example. Let’s consider a setting with
C = 2,N = 1000, p = 0.025, q = 0.0017. This gives us
P(G obeys C) < 2.18× 10−188.
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Experimental results: gUFM

Figure 7: gUFM for ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on 10 SSBM graphs

which do not satisfy condition C.

Figure 8: gUFM for ψF′
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on 10 SSBM graphs

which satisfies condition C.

https://arxiv.org/abs/2307.01951 GNN + Neural Collapse 24 / 34

https://arxiv.org/abs/2307.01951


Gradient-Flow of unconstrained features

To understand this “partial collapse” behaviour, we analyze the
gradient flow along the “central path” — i.e., when W2 = W∗

2(H)

is the optimal minimizer of R̂F ′
(W2,H) w.r.t. W2, as follows

dHt

dt
= −∇R̂F ′

(W∗
2(Ht),Ht). (14)

Theorem 3.3

Let K = 1, C = 2 and λW2 > 0. There exist α > 0 and E > 0,
such that for 0 < λH < α and 0 < ∥E∥ < E , along the gradient
flow stated in (14) associated with the graph Â = EÂ+ E, we have
that: (1) Tr(ΣW (Ht)) decreases, and (2) Tr(ΣB(Ht)) increases.

Accordingly, Ñ C1(Ht) decreases.
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Brief note on Oversmoothing

Oversmoothing

(Rusch et al.): For an undirected, connected graph G = (V, E) with
|V| = N and l-th layer hidden features Hl ∈ Rdl×N , a function
µ : Rdl×N → R≥0 is called a node-similarity measure if:

1 ∃c ∈ Rdl with Hi = c for all nodes i ∈ V ⇐⇒ µ(H) = 0, for
H ∈ Rdl×N

2 µ(H+ T) ≤ µ(H) + µ(T), for all H,T ∈ Rdl×N .

Oversmoothing with respect to µ is now defined as the layer-wise
exponential convergence of the node-similarity measure µ to zero

µ(Hl) ≤ C1e
−C2l , for l = 1, · · · , L with some constants C1,C2 > 0.

▶ Oversmoothing =⇒ ΣW (HL−1),ΣB(H
L−1) → 0.

▶ NC =⇒ ΣW (HL−1) decreases, and ΣB(H
L−1) is bounded

from below!!
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NC during Inference

Till now, we have analyzed the training phase of GNNs. But, what
about inference? What can we say about the NC properties of
features across depth?
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GNN vs Projected Power Iterations

As a baseline during inference, we perform spectral clustering using
projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices to approximate the Fiedler vector.

NL(G) = I−D−1/2AD−1/2, (15)

BH(G, r) = (r2 − 1)I− rA+D, (16)

where r ∈ R is the BH scaling factor. Now, by treating B to be
either NL or BH matrix, a projected power iteration to estimate the
second largest eigenvector of B̃ = ∥B∥ I− B is given by:

x(l) = B̃w(l−1), where w(l−1) =
x(l−1) − ⟨x(l−1), v⟩v∥∥x(l−1) − ⟨x(l−1), v⟩v

∥∥
2

,

(17)

with the vector v ∈ RN denoting the largest eigenvector of B̃. Thus,
we start with a random normal vector w0 ∈ RN and iteratively
compute the feature vector x(l) ∈ RN .
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Experimental results

Figure 9: NC1(H), ÑC1(H) metrics (top) and traces of covariance matrices (bottom) across projected power

iterations for NL and BH (a,b), and across layers for GNNs ψF
Θ and ψF′

Θ (c,d).
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Effect of graph convolutions

Figure 10: Ratio of traces of covariance matrices across projected power iterations for NL and BH (a,b), and across

layers for GNNs ψF
Θ and ψF′

Θ (c,d).

▶ Recall the layer for ψF
Θ : X

(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk

▶ We consider the case of C = 2 (without loss of generality) and
assume that the (l − 1)th-layer features H(l−1) of nodes
belonging to class c = 1, 2 are drawn from distributions D1,D2.

▶ Let µ
(l−1)
1 ,µ

(l−1)
2 ∈ Rdl−1 and Σ

(l−1)
1 ,Σ

(l−1)
2 ∈ Rdl−1×dl−1 as

their mean vectors and covariance matrices of D1,D2.
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Cont. Effect of graph convolutions

Theorem 4.1

Let C = 2, λi (·), λ−i (·) indicate the i th largest and smallest eigenvalue of a

matrix, β1 =
p−q
p+q

, β2 =
p

n(p+q)
, β3 =

p2+q2

n(p+q)2
, and

TW = W∗(l)⊤
1 W∗(l)

1 + β2
[
W∗(l)⊤

2 W∗(l)
1 +W∗(l)⊤

1 W∗(l)
2

]
+ β3W

∗(l)⊤
2 W∗(l)

2 ,

TB =
(
W∗(l)

1 + β1W
∗(l)
2

)⊤ (
W∗(l)

1 + β1W
∗(l)
2

)
.

Then, the ratios of traces Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
, Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
for layer l ∈ {2, · · · , L} of

a network ψF
Θ are bounded as follows:

∑dl−1
i=1 λ−i(ΣB (H(l−1)))λi (TB )∑dl−1

i=1 λi(ΣB (H(l−1)))
≤ Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
≤

∑dl−1
i=1 λi(ΣB (H(l−1)))λi (TB )∑dl−1

i=1 λi(ΣB (H(l−1)))
,

∑dl−1
i=1 λ−i(ΣW (H(l−1)))λi (TW )∑dl−1

i=1 λi(ΣW (H(l−1)))
≤ Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
≤

∑dl−1
i=1 λi(ΣW (H(l−1)))λi (TW )∑dl−1

i=1 λi(ΣW (H(l−1)))
.

Takeaway: The presence of W1H in the layer formulation of reduces the rate of

reduction of Tr(ΣB (X(l)))

Tr(ΣB (H(l−1)))
, Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
.
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Summary

▶ By adopting a Neural Collapse (NC) perspective, we analyzed
both empirically and theoretically the within- and between-class
variability of GNN features along the training epochs and along
the layers during inference.

▶ We showed that a partial decrease in within-class variability
(and NC1 metrics) is present in the GNNs’ deepest features but
full collapse is not expected in practise.

▶ We also showed a depthwise decrease in variability metrics,
which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers
in GNNs and along projected power iterations.

▶ Shed light on computation graphs that might be suitable for
graph-rewiring techniques, addressing oversmoothing and
potentially improving generalization on real-world large-scale
graphs!
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Open problems/questions

1 The connection between over-smoothing and neural collapse is
not fully explored.

2 What is an ideal graph rewiring strategy to achieve cond (C)?

3 How do neighborhood ratios scc ′ affect GNN performance ?
Especially, can we leverage cond (C) for efficient neighborhood
sampling in large-scale graphs?

4 Addressing Conjecture 3.1 on cond (C) and minimizers.

5 What can we say about other NC metrics? Especially, how
does the graph structure perturb the simplex ETF structure?

6 What about graph classification tasks?

7 Can attention layers learn Â that satisfies cond (C)?
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THANK YOU!

Code: https://github.com/kvignesh1420/gnn collapse
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