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Background: From RL to Meta-RL

« Standard RL - solve one task
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= Drawbacks: poor generalization
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« Meta-RL - solve a set of tasks
= Training meta-parameter 6 on task set {7;}
* Learn to learn (adapt) on task 7" : 05 =

fol(0
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= Testing (adaptation) on a new task

- Samples (state s and reward r)
determine the adaptation!!
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Background: Challenging Sparse Reward
and Dynamics Shift

« What hinders the RL in real world ?

""" Y Quadruped robot control
lDynamlcs Shift: :
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. changes in body parts mass changes in sliding friction !
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O Sparse reward: reward signal cannotbe  ,- "~~~ """ " TTTTTTTTTTTTOT .
: ) . Sparse Reward: Reward = 1
received until reaching a goal
Reward = 0 .

—>few information for learning and adaptation
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: Reward = 0 goal pos
O Dynamics shift: directly change the | x/' ; ; ard
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distribution of samples
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—average rewards (performance) changes
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Background: Prior work in transferring
samples for sparse-reward meta-RL

- Transfer samples across tasks through reward relabeling

= Trajectory 7 collected for task i can be transferred to learning task j if the
return of 7 is high under taskj

- Prior work [1] has relabeled 7 from i by reward function of j in multi-tasks

- Assumption: Transition dynamics remain the same across tasks, while
reward functions differ.

T from task i .
‘ Relabeled <3 Cons: assumption does not
or task j W hold facing both Sparse

Task j with Reward and Dynamics Shift

\ ‘ highreward  across tasks!

[1] Generalized Hindsight for Reinforcement Learning, Li et al.
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Background: Doubly Robust Estimator

- Off-policy evaluation: correct distribution shift
- estimate value of target policy 7, by the data collected by behavior policy r;,
(share the same dynamics)
- Doubly Robust Estimator: better value evaluation
> Contextual Bandits: one-step reward r
VPR = 7(s) 4 polr — #(s, @), P(s) = IEMe
¢ J
Policy importance weight p, = Ze@15) Estimation of true reward r

mp(als)
* Meaning of doubly robust:
® p.iscorrect DV = Eq g, [p-7(s,a)] @ #is correctly estimated->r — # = 0

= Direct use of DR estimator: relabel trajectory of samples from task i to task j

VER(sp = 5) = Vi (s, 7)) + p ()1 (s, ap) +|p;f(t+1) VER (st41) — Qo (s, ap, )]

Dynamics importance weight:/
. ;i (Se41|Se ap) Cons: 1) high variance;
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t) = ij e
pq () D (SexrlS0 ar) 2) p,; is unknown
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SD (DR Estimation)
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Doubly Robust Augmented Estimator
(DRaE) for Sample Transfer

- Upper bounding the MSE of biased DRaE V"(s; = s)
balancing variance and bias
- For a certain time step ¢ in an trajectory of length T, the MSE of V2%:

MSE(72R (s, = 9)) <[Ee [0 (©) (58U ()P (su42) = p OVER Gsua))] |+ (BeVy(s0)) + V(o)

HE: | (0 ()85 OYVER (5e41) = PR (DA @) + Vo (56 2) — pr (Y Eeaa [V (Se)]) |
® p7, p : importance weight between task i and j ® V(p,): terms that not related to p/
for policy and dynamics, respectively ® V;(s.): true state value in task j
® Vl-?R: direct use of DR estimator with true ® A(sg, a;): value difference between
dynamics importance weights true Q and Qg
® 7P2R: biased DRaE with estimated 5./ of dynamics ® Vy: network estimation for V;

- Optimal estimated value of dynamics importance:
= By minimizing upper bound of MSE:
pi (1) = @v,(stﬂ) — 15050, a0)) / (2V VPR (5¢41) )
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Doubly Robust augmented Transfer

- Sample transfer under sparse-reward with different
dynamics: relabeling sample and re-caculating state value
by DRaE

____________________________________________

§ Doubly Robust augmented Transfer
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Q& A
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