."T\&g;&.‘
3* "“'NEURAL INFORMATION m

%t . PROCESSING SYSTEMS
ole

Soft-unification in
Deep Probabilistic Logic AP

Jaron Maene & Luc De Raedt c
. DTAI




Limitations of logic

locatedIn(eiffel_tower, paris)

isIn(eiffel_tower, paris)?

locatedIn( A, paris)?

X X



Soft-unification: symbols — embeddings

locatedIn(eiffel_tower, paris) =? locatedIn(A, brussels)
P A
eiffel_tower

paris

brussels
P

embedding space

Generalizes knowledge graph embeddings: we retain the full power of
first-order logical reasoning.



Contributions in short

(1) We give sound probabilistic semantics to learnable soft-unification.
(2) We show the equivalence of soft-unification with existing
(neuro-)symbolic frameworks based on (neural) probabilistic facts.



How it works: learning embeddings inside of logic

Query: Program:

locatedIn( é , france)? locatedIn(eiffel_tower, paris)
locatedIn(paris, france)

locatedIn(X, Y) «
locatedIn(X, Z) A locatedIn(Z, Y)

Proofs:

((A= eiffel_tower) A (france = paris))
Vv 1A = paris)
V = eiffel_tower)

Vo ...



Semantics

((A = eiffel_tower) A (france = paris))

\% ,A_ paris) ——)> Score
\Y A eiffel_tower)

1]

b

Neural Theorem Prover: soft-unification with fuzzy semantics

(0.9 A 0.5) V (0.6) V (0.9)
= max(min(0.9, 0.5), 0.6, 0.9) = 0.9 (Godel t-norm)

=> end-to-end differentiable!

Rocktaschel, Tim, and Sebastian Riedel. "End-to-end differentiable proving."
Advances in neural information processing systems 30 (2017).



Problems with fuzzy semantics

Sparse gradients

— |nefficient training

— Local optima max
min p(l = paris) p(l = eiffel_tower)

p(A‘= eiffel_tower) p(paris = france)

de Jong, Michiel and Fei Sha. “Neural Theorem Provers Do Not Learn Rules Without Exploration.” ArXiv abs/1906.06805 (2019).



Problems with fuzzy semantics

Well-defined succes scores
— Equivalent logic should give equivalent results
— Impossible for non-sparse fuzzy semantics

a =2 a A a

(a Ab)V (a Ac)=2aA (b A c)



Problems with fuzzy semantics

Connected embedding space

— Between two embedded symbols
x and y there exists a z.

A

y

>

embedding space

No redundant soft-unifications

— You can’t increase a proof score
by inserting soft-unifications.
p(x =y) =z p((x =2z) AN (z=1y))
A

.

Ly

Theorem: In Godel t-norm semantics,

these properties are mutually exclusive.

embedding space




Contribution (1)
probabilistic semantics satisfy properties

Theorem: If we interpret the soft-unification as a probability, we and take a
soft-unification function of the form e~%(®¥) with d a distance, we get:

(1) Well-defined proof scores

(2) No redundancy in proofs

(3) Connected embedding space
(4) Non-sparse gradients




Contribution (2)
soft-unification «— (neural) probabilistic facts

locatedIn(eiffel_tower, paris)
locatedIn(paris, france)
locatedIn(X, Y) ¢« locatedIn(X, Z) A locatedIn(X, Y)

+ non-linear rules
+ grounding of soft-unification

(cf. paper)

@ source transformation
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locatedIn(X, Y) « (X = eiffel_tower) A (Y = paris)
locatedIn(X, Y) « (X paris) A (Y = france)
locatedIn(X, Y) ¢« locatedIn(X, Z) A locatedIn(X, Y)

1

Manhaeve, Robin et al. “DeepProblLog: Neural Probabilistic Logic Programming.” Advances
in neural information processing systems 31 (2018).



DeepSoftLog = ProbLog + soft-unification + neural networks

Extend ProbLog with embedded terms: ~paris, ~vision_model( A) -

Embedding is optional
Embedded functors are neural networks
Predicates cannot be embedded (but easy to simulate)

L
o
L
e Semantics based on ProbLog



t(~neighbourOf, ~france, ~germany).

Experiment: knowledge graphs

t(~locatedIn, ~germany, ~western_europe).
t(~locatedIn, ~western_europe, ~europe).

t(~rl, X, Y)
t(~r3, X, Y)

i t(~r2, Y, X).
- t(~r4, X, 2Z), t(~r5, Z, Y).

Countries S1 S2 S3

NTP [20] 90.93+ 154 8740+ 11.7 56.68+17.6
GNTP [26] 99.98 £0.05 90.82+0.88 87.70+4.79
DeepSoftLog (Ours) 100.0 = 0.00 97.67 £0.98 97.90 + 1.00
NeuralLP [34] 100.0 £ 0.0 75.1+0.3 92.24+0.2
CTP [27] 100.0 = 0.00 91.814+1.07 94.78 +0.0
MINERVA [£] 100.0 £ 0.00 92.36 =2.41 95.10+1.2




Experiment: differentiable finite state machines

Jointly learn perception network finite state machine transitions

Positive examples: IZlld FEIKNZAEN | °
Negative examples: [l , (S22 ...

Language (01)* 0*10* (0] 10*10%)*

RNN 77.63 £15.06 61.594+10.09 50.14 +1.36
DeepSoftLog 83.93 £25.87 87.01 +7.18  56.12 + 15.98

Results: DeepSoftLog is more interpretable and generalizes
better, compared to a purely neural baseline.



Thank you!

Paper: https://openreview.net/forum?id=s86M8naPSv
Code: https://qgithub.com/jicmoon/DeepSoftLog
Twitter: @jjicmoon & @lucderaedt



https://openreview.net/forum?id=s86M8naPSv
https://github.com/jjcmoon/DeepSoftLog
https://twitter.com/jjcmoon
https://twitter.com/lucderaedt

