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Matrix Compression

e Matrices are ubiquitous — can involve billions of elements making their storage and
processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.
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Matrix Compression

e Matrices are ubiquitous — can involve billions of elements making their storage and
processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

e Several real-world matrices exhibit approximately low-rank structure due to inherent
redundancy or patterns. [Udell & Townsend, 2019]
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Matrix Compression

e Matrices are ubiquitous — can involve billions of elements making their storage and
processing quite demanding in terms of computational resources and memory usage.

Eg.: Vector databases, Kernel matrices, LLM weight matrices, etc.

e Several real-world matrices exhibit approximately low-rank structure due to inherent
redundancy or patterns. [Udell & Townsend, 2019]

o Singular value decomposition: Any matrix A € R™* ¢ can written as:

rank(A)
T
A = E oiuv; ,
=1

where {o;} are the singular values, and u; € R", v; € R? are singular vectors.

Breast-cancer dataset: 569 x 30 dim. matrix
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e Question: How to compress matrices via dimensionality reduction and quantization?

e Our solution uses Randomized Embeddings.
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Matrix Compression: Low-precision and Low-Rank

Full-precision B bits B’ bits

m < min{n,d}

e We obtain a randomized factorization, A =~ LR, where the entries of left factor (L) and
right factor (R) are quantized with B and B’ bits per entry respectively.

o Total bit requirement is mnB + mdB’.

e By tuning sketch-size m we can ensure compression while letting B and B’ to take values
allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.

Low-precision computations also have low latency: Computing Ax versus L(Rx).
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Matrix Compression: Low-precision and Low-Rank

Full-precision B bits B’ bits

m < min{n,d}

d m

Our LPLR algorithm:
o Computes randomized rangefinder AS, and quantizing it.
o Computes approximate projection of the columns of A onto this quantized basis.

Algorithm 1: LPLR: Randomized Low-Precision Low-Rank factorization

Input :Matrix A € R™*?, sketch size m, Quantizers Q, Q' with dynamic ranges Rq, Rq and
bit-budgets B, B’ respectively.
Output : Factorization: LR where L € R™*™ R € Rmxd
1 Sample a Gaussian sketching matrix § € R¥*™ with entries S;; ~ N (0, L).
2 Compute an approximate basis of column space of A by forming the sketch: AS.
3 Quantize the approximate basis with Q to get Q(AS).
4 Find W* = arg miny, || Q(AS)W — A||12T
s Quantize W* using quantizer Q' to get Q'(W*).
6 return Loy k and low-precision approximation LR where L = Q(AS), R = Q'(W*).
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Matrix Compression: Low-precision and Low-Rank

Saha

Full-precision B bits B’ bits

m

n d

m < min{n,d}

We obtain a factorization, A = LR, where the entries of L and R are quantized with B
and B’ bits per entry respectively.

A popular benchmark) Naive quantization: Quantize each entry of A € R™*% uniforml
pop q y y
with a Byq — bit quantizer.

!
Compression ratio with respect to naive quantization is %.

By tuning sketch-size m we can ensure compression ratio < 1 for B,q = 1, while letting B
and B’ to take values allowed by current hardware-primitives, e.g., 4-bits, 8-bits, etc.

Direct-SVD quant. benchmark: Compute the best rank-k approximation (UE)kV; by
retaining the top-k singular vectors, and subsequently quantize: A ~ Q((UE);C)Q’(VZ).
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Image compression

Original Naive DSVD LPLR (ours) LSVD (ours)

Compressing a brain MRI. B =4, B’ =8, Bng =1,m =124, n = 1534 d = 1433

Original Naive DSVD LPLR (ours) LSVD (ours)

Compression of a Jupiter image showing its Great Red Spot and Ganymede's shadow (NASA/ESA
Hubble Space Telescope). B = 2, B’ = 8, By,q = 1, m = 110. Orig. image dim.: 1102 x 1102
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https://cdn.spacetelescope.org/archives/images/large/opo1431a.jpg
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Approximate nearest neighbor search

e For a given data matrix A € R"*% and a query x € R?, retrieve

it = argmax; ¢, (Ax); & argmax;c,;(LRx);

e Applications: Semantic search over vector databases (music recommendation), In-context
learning for LLMs, etc.

Table 5: CIFAR100 embeddings generated by MobileNetV3 with an unquantized accuracy and F1 score
76%:Results on LPLR and LPLR-SVD with B = B’ = 8 bits

Frobenius Norm Error Accuracy (%) ‘Weighted F1 Score (%)

Bn, LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 1.04 1.08 1.09 6.75 79 82 82 1 79 82 82 0
2 1.08 1.1 112 218 80 80 80 1.7 80 80 80 1.3
4 1.11 1.12 1.14 117 79 78 71 75 79 78 78 75

Table 6: IMDB embeddings generated by BERT with an unquantized accuracy and F1 score 75% and
74% respectively: Results on LPLR and LPLR-SVD with B = B’ = 8 bits

Frobenius Norm Error Accuracy (%) Weighted F1 Score (%)

B,, LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 0313 0241 0229 6.63 73 74 75 50 74 74 75 33
2 0235 0178 0161 1.016 74 74 74 50 74 74 74 50
4 0.148  0.122  0.098 0.417 75 74 75 73 74 74 75 73

Saha, Srivastava, Pilanci Matrix Compression Dec 10 - Dec 16, 2023 New Orleans 7/11



Compressing weight matrices of LLMs

e LlaMa 7b [Touvron et. al, 2023]: An LLM with several layers (difficult to deploy on GPUs)

—— LPLR —=— Naive Quant —— LPLR SVD

Relative Frobenius norm error

Comparison of LPLR and LPLR-SVD on LlaMa weight matrices with B = B’ = 8 bits, Bnq = 4 bits, ordered by
the original sequence of layers on the “Layer” — axis. We observe consistently better Frobenius norm error using
LPLR and LPLR-SVD, with the exception of specific layers which lend themselves to naive quantization.

B = B’ = 8 bits, Byq = 4 bits
Metric LPLR LPLR-SVD  Naive Quant.

Mean 0.672 0.537 0.836
StdDev  0.080 0.079 0.470

Average relative Frobenius norm error on LlaMa weight matrices
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Theoretical analysis

e Approximation error upper bounds on the Frobenius norm ||[LR — A||Z.

e Bit requirement: How many bits are required per matrix coordinate to achieve the
corresponding approximation error?

e Computation requirement: No. of floating point multiplications of the rate determining
step. O(ndm) for LPLR vs. O(nd?) for direct-SVD quant.

e Properties of randomized embeddings useful for LPLR factorization:

o Subspace approximation: For approximately low-rank matrices A € R™* d, randomly sketching
the columns, i.e., AS € R™X™ constitutes a basis for range(A) with high probability.

[Halko et. al, 2011; Witten & Candes, 2015; Tropp et. al, 2017, ...]
o Democratic equalization: ||AS||max £ max; j|A;j|is “small” with high probability.

[Charikar, 2002; Boufounos & Baraniuk, 2008; Plan & Vershynin, 2014, Lyubarskii & Vershynin,
2006; Studer et. al. 2015, ...]

Details in paper
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Conclusions

1. Randomized-embedding based matrix compression: Low precision and low rank
representations.

2. Computationally efficient: O(ndm), m < min{n, d} for randomized-embedding based
LPLR vs. O(nd?) for direct-SVD based methods.

3. Sketch size m is a tunable knob. Allows flexible compression ratios that achieve parity with
(aggressive) quantization as low as a single bit (using current hardware primitives).

4. Provably better approximation error guarantees (Details in paper).

5. Applications in compressing datasets, neural network weights, approximate nearest
neighbors, etc.
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Thank you!

Reach out for questions or discussions:
rajsaha@stanford.edu

Poster Session:
Tue 12 Dec 10:45 a.m. CST — 12:45 p.m. CST, Great Hall & Hall B1+B2 #1824
https://neurips.cc/virtual /2023 /poster /70291

Paper: https://openreview.net/forum?id=rxsCTtkqA9
GitHub: https://github.com/pilancilab/matrix-compressor
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