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Introduction

0 Research Question

+ Letx = (X;,..,X,) €RPandy=(Y¥,..,Y,) €R?be two random vectors,
H,:x Is independent of y,
H,: xIs not independent of y .

0 Value of Research

* The problems of measuring nonlinear dependence between x and y and
testing for their independence are fundamental and have a wide range of
applications in statistics and machine learning.



Related Literature

Distance correlation can capture
nonlinear relationship under a specific Distance correlation / HSIC can only detect
Distance correlation (Szekely et al., 2007) alternative hypothesis componentwise linear dependences
HSIC (Gretton et al., 2007) (Gao et al., 2020) (Zhu et al., 2020)

| I p/n

p grow much faster thann

p is fixed

Motivation: So we want to bridge the gap between these two scenarios and provide
statistical insights into the performance of HSIC when the dimensions grow at different rates.



Preliminaries

O The squared Hilbert-Schmidt norm

HSIC(x,y) = E{K(x1,X2)L(y1,¥2)} + E{K (X1, X2)}E{L(y1,¥2)} — 2E| E{K (X1,X7) | X1}E{L(y1,¥2) | y1} .

O The squared sample Hilbert-Schmidt norm

2
HSICn(X,Y) = 1) z K(Xll’ XLZ)L(YLl YLZ)_ 1)(n 2) z K(Xl1’ Xlz)L(Yl1 Yl3)

(i1,i2) (i1,i2,i3)
1

T n(n-1)(n-2)(n-3) Z(ilriz»i3;i4) K(Xll ’ Xiz)L(Yi3 ’ YL4)'

O The squared sample Hilbert-Schmidt correlation

HSIC,,(x, y)
JHSIC,, (%, ) HSIC,,(y, y)’

hCorrz(x,y) =




Asymptotic properties in High Dimensions

O The asymptotic properties of the HSIC based test under the null hypothesis.

Theorem 1. Assume the kernels are symmetric with finite fourth moment, i.e., K(X;,Xs) =

K(x2,%x1), L(y1,y2) = L(y2,y1), E{K*(x1,%x2)} < oo and E{L*(y1,y2)} < oo. Further
assume that p + q — 09,

E{Hi(xfl:XQ)}E{H;(YhYQ)}_)0 . E{G3(x1,x2) }E{G}(y1.¥2)}
n{HSIC(x,x)HSIC(y,y)}? ’ {HSIC(x,x)HSIC(y,y)}?

as n — oo. Then under the null hypothesis, we have 2~/?n hCorr? (x, y) 4 N(0,1).

— 0,

O It greatly expedites the implementation of HSIC based tests because no additional
permutations are required to decide critical values.



Asymptotic properties in High Dimensions

O The two assumptions of Theorem 2.
(A1) There exists some x, > 0 such that E{Hz““”2 — E(||z*||2)}2‘l“ = E(szz;)Qk — d—kKz for
all k € NT.

(A2) Let ko(z) = k(z*/?) and Iy (y) = I(y*/?). The first and second derivatives of kq(-) and lo(-)
are uniformly bounded away from zero to infinity around E||x} — x34||? and E||y} — y3||%,
respectively.

O The power performance of the HSIC based test under the alternative hypothesis.

Theorem 2. Assume (Al) and (A2) hold true. Then under the alternative hypothesis, if
nl/QhCDl“]_‘Q(X, y) — 0o asn — oo, we have n hCorr? (x,¥) — oo in probability.

O Theorem 2 guarantee that the HSIC based test can have nontrivial power in high
dimensions together as long as the signal strength does not decay to zero too fast.



Statistical Insights in High Dimensions

O We expand HSIC(x, y) at the population level

F'heorem 3. Assume (Al) and (A2) hold true. Then under the alternative hypothesis,

1. when p — oo and q remains fixed as n — oo, if E(x®" | y) = E(x®") hold true for all
t < s for some s € Nt then HSIC(x,y) = O(p~*"</2), and

s _2 ¢ : * RO * || 2a — 5K
BSICGy) = K 3D L DRt 2 )+ o),
2ate=s

2. whenp — oo and ¢ — oo asn — oo, if cov(x® y®2) £ 0 only when t; > s, and
ty > so for some s1,s9 € NT, then HSIC(x,y) = O(p—51%=/2¢—%2%3/2), and

ko (=2) 15 (=2)
HSIC(X, y) - Z Z {1111‘11181] aglagln‘:g[
2a1+c1=s1 2ag+co=s52

+O(p_5151;2q_52ﬁy/2)*

2

e

F

O The Theorem 3 characterizes the changing process of the ability to measure nonlinear
dependence in high dimensions for HSIC.



Statistical Insights in High Dimensions

Theorem 2 and Proposition 1

————————————————————————

asymptotic power 1

HSIC based test have J

The association type \
between random vectors

The dependence structures
/ within covariates

Sample size

! |
| |
| |
i p(s—l)'fx =o(n) i
| |
| |
| |

Dimensionality

\ p(sl_l)KXq(SZ_l)Ky = O(n) /

\

—————————————————————————



Numerical Studies

Example 1. Let n = 100, £, = L,y,, and I, = I, , We generate x = (X, ...,Xp)T € RPandy = (V;, ...,Yq)T €
R? and x~ N(0, Zy) and y~ N(0, Z,) be independent. We consider two scenario : (1) g =1 and vary p from {5,
25, 100}; (2) p = g =d and vary d from {2, 5, 10}.

(C):d=10 (B): The second scenario. 10



Numerical Studies

Example 2. Let n =100, , = (0.5-11) , we generate x = (Xy, ...,X,) € RPandx~ N(0, %), fix ¢ = 1 and
PXD p

vary p from {30, 50, 100, 200, 500, 1000}, The independent error term ¢ follows standard normal distribution
and the univariate response Y is generated through

Model (I): Y=X+-+X, +e
Model (I): Y =X7+-+X5+¢
Model (I1):  {(Xyx_1, X0:)T | Y} ~ N{O' (p,'{f;f')zxz},k =1,..,p/2.

p
Model  Test 30 50 100 200 500 1000

Gaussian  1.000 1.000 1.000 1.000 0.998 0.954

(D Laplacian 1.000 1.000 1.000 1.000 0.994 0.916

DC 1.000 1.000 1.000 1.000 1.000 0.998

Gaussian 0934 0.774 0484 0318 0.184 0.132

(II) Laplacian 0.998 0.978 0.834 0.596 0.314 0.234
DC 0974 0.894 0.650 0.412 0226 0.176

Gaussian  0.044 0.050 0.060 0.046 0.060 0.068

(11I) Laplacian 0.050 0.046 0.054 0.048 0.054 0.060
DC 0.050 0.050 0.052 0.034 0.064 0.044

11



Numerical Studies

Example 3. Let n =100, X, = (0.5|i‘f|)pxp, we generate x = (Xj, ...,Xp)T € RP and x ~ N(0, Z,). We set p =

q = d and vary d from {6, 10, 20, 50, 100, 200}. The independent error terms &, . .

., € are generated from

d independent standard normal distributions and the y = (Y3, ..., Y;)7 is generated through

Model (IV) Y] :X]+€],] = 1, ,d,
Model (V): Y =X?+¢,j=1,..,4d
: T - A Ali—]l _
Model (V): (a1, X207 1y) ~ N{0- (o)1) Lk
Model Test d
6 10 20 50 100 200
Gaussian  1.000 1.000 1.000 1.000 1.000 1.000
(IV)  Laplacian 1.000 1.000 1.000 1.000 1.000 1.000
DC 1.000 1.000 1.000 1.000 1.000 1.000
Gaussian  1.000 1.000 0.944 0.440 0.242 0.140
(V) Laplacian 1.000 1.000 1.000 0.904 0.578 0.282
DC 1.000 0986 0.844 0.400 0.232 0.136
Gaussian  0.056 0.064 0.046 0.078 0.038 0.072
(VI)  Laplacian 0.058 0.064 0.044 0.074 0.040 0.072
DC 0.060 0.066 0.046 0.078 0.040 0.072

12



Real Data Applications

O There exists dependences between the monthly mean stock prices of the energy sector and
the raw material sector from the results.

[ X: Stock returns series of 224 companies
. from the raw material sector.

. y: Stock returns series of 214 companies
. from the energy sector.

~ -

Gaussian kernels p-values: 2.031 X 10~1°
Laplacian kernels p-values: 2.749 X 10~°

RV coefficient p-values: 2.02 X 10~*

O The average stock returns for other software companies may change depending on how the
leading software companies perform.

( X : Stock return series of Mercado Libre
i and Microsoft.
1
1
1

Gaussian kernels p-values: 7.438 X 107>
Laplacian kernels p-values: 4.954 X 107°

y : Stock returns series of 259 software RV coefficient p-values: 0.0584

—e— e = =

~ -
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Conclusions

O The asymptotic null distribution of a rescaled HSIC is a standard normal in the high
dimensional setting.

O The general condition for the HSIC based tests to have power asymptotically
approaching one.

O This condition depends on the sample size, the covariate dimensions, the dependence
structures within covariates, and the association types between x and y.
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