
Monitor-Guided Decoding of Code LMs
with Static Analysis of Repository Context

Presenting at NeurIPS 2023
Thirty-seventh Conference on Neural Information Processing Systems, New Orleans

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, Sriram Rajamani

Code and Data
aka.ms/monitors4codegen

Link to Paper
aka.ms/mgd_paper

https://aka.ms/monitors4codegen
https://aka.ms/mgd_paper

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) – especially in
private settings and not seen during training

Hence, LMs end up using types defined in other files
incorrectly, for example, hallucinating undefined names
at dereference locations

Recent techniques use retrieval-based prompting, which
bloats up the context, and is limited by LM context
window size. If the prompts do not have all the relevant
information, the LMs still end up hallucinating.

Introduction

1

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) – especially in
private settings and not seen during training

Hence, LMs end up using types defined in other files
incorrectly, for example, hallucinating undefined names
at dereference locations

Recent techniques use retrieval-based prompting, which
bloats up the context, and is limited by LM context
window size. If the prompts do not have all the relevant
information, the LMs still end up hallucinating.

Introduction

1

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) – especially in
private settings and not seen during training

Hence, LMs end up using types defined in other files
incorrectly, for example, hallucinating undefined names
at dereference locations

Recent techniques use retrieval-based prompting, which
bloats up the context, and is limited by LM context
window size. If the prompts do not have all the relevant
information, the LMs still end up hallucinating.

Introduction

1

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) – especially in
private settings and not seen during training

Hence, LMs end up using types defined in other files
incorrectly, for example, hallucinating undefined names
at dereference locations

Recent techniques use retrieval-based prompting, which
bloats up the context, and is limited by LM context
window size. If the prompts do not have all the relevant
information, the LMs still end up hallucinating.

Introduction

1

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) – especially in
private settings and not seen during training

Hence, LMs end up using types defined in other files
incorrectly, for example, hallucinating undefined names
at dereference locations

Recent techniques use retrieval-based prompting, which
bloats up the context, and is limited by LM context
window size. If the prompts do not have all the relevant
information, the LMs still end up hallucinating.

Introduction

1

Intuition: IDEs assist human developers by providing global context information during code authoring.
We extend this IDE assistance to LMs.

Monitor guided decoding
(MGD) proposes monitor as a
stateful interface between LMs

and static analysis.

A monitor runs concurrently to
the decoder, and iteratively uses

results from continuous static
analysis to mask the generation

of type-incorrect identifiers.

Unlike a priori retrieval, MGD
invokes static analysis during the

entire decoding process,
providing the most relevant

suggestions on demand.

Monitor Guided Decoding

2

MGD is a generalizable technique
that works across programming
languages, coding scenarios and

can use many different static
analyses for monitoring

Monitor guided decoding
(MGD) defines monitor as a

stateful interface between LMs
and static analysis.

Intuition: IDEs assist human developers by providing global context information during code authoring.
We extend this IDE assistance to LMs.

Monitor Guided Decoding

2

A monitor runs concurrently to
the decoder. It iteratively uses
results from continuous static

analysis to mask tokens
inconsistent with the static

analysis.

MGD is a generalizable technique
that works across programming
languages, coding scenarios and

can use many different static
analyses for monitoring

Monitor guided decoding
(MGD) defines monitor as a

stateful interface between LMs
and static analysis.

Intuition: IDEs assist human developers by providing global context information during code authoring.
We extend this IDE assistance to LMs.

Monitor Guided Decoding

2

A monitor runs concurrently to
the decoder. It iteratively uses
results from continuous static

analysis to mask tokens
inconsistent with the static

analysis.

MGD is a generalizable technique
that works across programming
languages, coding scenarios and

can use many different static
analyses for monitoring

Monitor guided decoding
(MGD) defines monitor as a

stateful interface between LMs
and static analysis.

Intuition: IDEs assist human developers by providing global context information during code authoring.
We extend this IDE assistance to LMs.

Monitor Guided Decoding

2

A monitor runs concurrently to
the decoder. It iteratively uses
results from continuous static

analysis to mask tokens
inconsistent with the static

analysis.

Working of Monitor Guided Decoding

… …

3

…
s0 is the default state in which all vocabulary tokens are valid. All the other states represent constraints

to be applied for the next token.

Working of Monitor Guided Decoding

… …

3

Precondition check – determines when to trigger the static analysis.

Working of Monitor Guided Decoding

… …

3

Partial static analysis that derives constraints on the subsequent code at trigger location, such that the

monitored property continues to be satisfied, for example, type-consistent identifier names

Working of Monitor Guided Decoding

… …

3

Working of Monitor Guided Decoding

… …

3

Identifies LM vocabulary tokens consistent with the current state of monitor. For example, selects tokens

that are either prefix of any string in the current state, or of the form , where w is a member of

current state, E is a special set of non-identifier characters.

Working of Monitor Guided Decoding

… …

3

Working of Monitor Guided Decoding

… …

3

Takes the current state, and decoded token as input, producing the next state consisting of updated

constraints in light of the new token, or transitions back to the initial state,

Working of Monitor Guided Decoding

… …

3

Working of Monitor Guided Decoding

… …

3

Working of Monitor Guided Decoding

… …

3

Identifies LM vocabulary tokens consistent with the current state of monitor. For example, selects tokens

that are either prefix of any string in the current state, or of the form , where w is a member of

current state, E is a special set of non-identifier characters.

…
s0 is the default state in which all vocabulary tokens are valid. All the other states represent constraints

to be applied for the next token.

Partial static analysis that derives constraints on the subsequent code at trigger location, such that the

monitored property continues to be satisfied, for example, type-consistent identifier names

Precondition check – determines when to trigger the static analysis.

A Monitor is a 6-tuple

Takes the current state, and decoded token as input, producing the next state consisting of updated

constraints in light of the new token, or transitions back to the initial state, 4

Formalizing Monitor Guided Decoding

CG-350M Salesforce CodeGen-350M-Multi

CG-2B Salesforce CodeGen-2B-Multi

CG-6B Salesforce CodeGen-6B-Multi

SC BigCode SantaCoder-1.1B

TD-3 OpenAI text-davinci-003 (175B)

Standard Prompt consists of only the
target method file content

classExprTypes Including cross-file type
information in prompt

RLPG Including cross-file
information by learning to
predict from 60+rules

FIM Use of the fill-in-the-middle
capabilities of the model

CR Compilation Rate: Fraction of testcases, for which
generated code compiled successfully

NIM Next Identifier Match: Fraction of testcases, for
which generated next identifier is accurate

ISM Identifier Sequence Match: Percent prefix of
ordered identifiers in the ground truth matched by
the generated code

PM Prefix Match: Percent prefix of ground truth
matched by generated code

Models Prompting Baselines Evaluation Metrics

5

of Repositories 100

of Methods 1420

of Testcases 10538

• Each testcase consists of a prompt up to a dereference point in a
target method

• Task: method-completion utilizing repository-level context
• For evaluation, 6 generations are sampled for each testcase

PragmaticCode and DotPrompts: Java Evaluation Dataset

Evaluation & Results: Experimental Setup

Every LM with MGD (irrespective of
model size and architecture)
20-25% relative improvement in
compilation rate

CodeGen-350M with MGD beats the
500x larger text-davinci-003

SantaCoder-1.1B with MGD improves
over compilation rate of text-davinci-
003 (without MGD) by a large relative
margin of 16.5%

Compilation Rate

6

Improvements in Compilation Rate

SantaCoder-1.1B with MGD can generate type-correct non-local identifiers having better match with ground
truth than text-davinci-003 (175B) across all tested numbers of trials

Next Identifier Match Prefix MatchIdentifier Sequence Match

7

Improvements in Intent Satisfaction

Programming Languages

Coding Scenarios

Richer properties through static analysis

Generalizability study: MGDMicroBench

8

Generalizability study: Coding Scenarios
Correct number of arguments to methods (trigger on '<ident>(')

Valid class instantiation (trigger on 'new ')

switch over enum (trigger on 'case ')

9

Generalizability study: Richer properties through static analysis

Typestate specifications, often expressed as finite state machines (FSMs), define
valid sequences of operations that can be invoked on objects of a given type.

10

Thank you!

Monitor-Guided Decoding of Code LMs
with Static Analysis of Repository Context

Code and Data

aka.ms/monitors4codegen

Link to Paper

aka.ms/mgd_paper

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, Sriram Rajamani

11

https://aka.ms/monitors4codegen
https://aka.ms/mgd_paper

	Main Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

