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Motivating Examples in Constrained RL

2. 

Image Source: Pham, T.-H., De Magistris, G., & Tachibana, R. (2018). OptLayer—Practical Constrained Optimization for Deep 
Reinforcement Learning in the Real World (arXiv:1709.07643). arXiv. http://arxiv.org/abs/1709.07643

Image Source: Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & 
Zaremba, W. (2016). OpenAI Gym (arXiv:1606.01540). arXiv. 
https://doi.org/10.48550/arXiv.1606.01540

To describe physical limitations in simulators To avoid collisions in robot arms
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3. 

Action Constrained Reinforcement Learning (ACRL)

• Agents can only take actions from feasible subset of all actions 
based on the current state.
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Previous Work
• NFWPO
• Use Frank-Wolfe algorithm to 

update
• Challenge: Significantly high run-

time overhead due to Frank-Wolfe 
direction finding subproblem in the 
policy update.

5. 

• A Projection Layer
• Projection the action into the 

nearest action in the feasible 
region

• Challenge: Zero gradient 
problem
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Our Contributions
• We develop multiple methods to generate samples from constrained 

space
• Hamiltonian Monte-Carlo 
• Probabilistic decision diagrams (PSDD)

• We utilize normalizing flows, a type of generative model to learn a 
differentiable, invertible mapping between the samples from 
constrained space and a simple latent distribution.
• We propose a method to integrate normalizing-flow model with deep 

RL algorithms such as DDPG

6. 
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Training a Normalizing-Flow model to approximate the 
constrained space

7. 

• We first generate samples (𝑠, 𝑎) from the feasible region,
• Rejection Sampling
• Hamiltonian Monte Carlo

• Map them to a uniform base distribution using a normalizing flow model 
and maximize log-likelihood
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Example Mapping: Reacher Env
8. 

After training, the model serves as a differentiable, bijective 
mapping from a simple uniform distribution to the feasible region.
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Quality of the Trained Flow
• For RL-agent to converge to better returns, the model should 

approximate the constrained space well.
• The model should produce actions only in feasible region (Accuracy)
• The model should be able to cover most of the feasible region (Recall)

9. 
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Measuring Accuracy
• Generate sample from using the model and measure what 

percentage of them are placed in the feasible region.

10. 
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Measuring Recall (Coverage)
• Generate samples from the feasible 

region using a known technique and 
map them back to the latent space to 
measure recall.

11. 
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Integration with the RL agent
• Inverse of the trained model is incorporated with RL agent’s 

policy network to output feasible actions as the final output

12. 

Flow model parameters are fixed.Agent parameters are learned
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Evaluation

13. 

• Environments
• 4 continues action environments
• Reacher
• Half Cheetah
• Hopper
• Walker2d

• 1 combinatorial action environment
•  Bike Sharing System (BSS)

• Algorithms
• NFWPO
• DDPG+Projection
• FlowPG (Ours)
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Fewer constraint violations
• Our approach produce 

fewer constrain 
violations and the 
magnitude of the 
constraint violations are 
low. 

14. 
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• In all cases our approach 
produce similar or better 
returns with a significantly 
faster run times than 
NFWPO.

15. 

Better returns and faster run time
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Thank you


