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Motivation

Certified Robustness for Text Classification
• Given a text data pair (𝑋, 𝑦). 𝑋 = [𝑤1, … , 𝑤𝑛]. Suppose that 𝑓 can 

make the correct prediction, i.e., argmax!!∈# 𝑓𝑦𝑖(𝑋) 	= 	𝑦. In the 
context of certified robustness, we are interested in getting a certified 
prediction result such that argmax

!!∈#
𝑓𝑦𝑖(𝑋′) 	= 	𝑦 holds for any 

allowed perturbed sample 𝑋′ of 𝑋
• Perturbed sample 𝑋′ is obtained by replacing each word 𝑤𝑖	by its 

synonym (Suppose 𝑤𝑖 has m𝑖 synonyms)



Motivation

• Recent years have seen an urge for robust natural language 
processing models that can provide certified robust predictions
• The key to producing certified predictions is certified robust training, 

which introduces perturbation during training to ask the model to 
adapt to it
• We observe there is a structural gap in current certified robust 

training



Motivation

• Structural gap in 
current certified 
robust training

Figure 1: Given the (a) base model, (b) Type I frameworks construct the smoothed model 
in the discrete word space while (c) Type II frameworks construct it in the latent space 
with IBP. There is a need for unifying these training frameworks and improving the 
robustness of the base model.



Motivation

• Type II frameworks need to include an extra IBP module compared to 
Type I frameworks, which affects the certification because of the 
loose bound problem of IBP

• Research question 1: how to build a unified framework for these two 
types of pipelines to provide stronger certified robustness?



Motivation

• The use of cross-entropy loss lacks fine-grained robustness 
regularization for individual modules and consideration of the final 
certification target

• Research Question 2: how to design robustness regularization terms 
for individual modules to further improve the base model robustness



UniT

• We design a unified certified robust training framework named UniT 
by utilizing the embedding space as the intermediate

Figure 2: Given the base model, UniT unifies two frameworks by working in the 
embedding space. Type I training replaces original embeddings with embeddings of 
perturbed samples. Type II training adds Gaussian noise to original word embeddings.



UniT

Certification
• For the Type I scenario, we can obtain the certified robustness 

guarantee from Proposition 1 of SAFER by constructing the smoothed 
model based on synonym substitutions
• For the Type II scenario, we propose a new theorem (See Theorem 1 

in our paper) for obtaining certified results directly in the embedding 
space

Mao Ye, Chengyue Gong, and Qiang Liu. Safer: A structure-free approach for certified robustness to 
adversarial word substitutions. In ACL 2020.



UniT

Training Loss
• We propose a decoupled regularization (DR) learning paradigm that 

directly conducts modular regularization to aid the CE loss

Figure 3: DR loss contains a pathway (MR term) for providing 
modular regularization for CE loss.
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Experiment Setup

• Datasets: (1) IMDB, (2) SST2, (3) Yelp, and (4) AG
• Baselines: SAFER (Type I), CISS (Type II), PGD Loss (Adversarial 

Training), and TRADES Loss (Adversarial Training)
• Metric: Certified Robust Accuracy (CRA) 
• CRA = natural accuracy * certification ratio



Experiments

• Comparison on Certified Robust Accuracy

Table 1: Comparison of certified robust accuracy (%) in the Type I scenario.

Table 2: Comparison of certified robust accuracy (%) in the Type II scenario.



Experiments

• Comparison on Empirical Robust Accuracy

• We also verify the design of our unified framework and DR loss 
through additional analysis experiments. Please refer to our paper for 
further details

Table 3: Comparison of empirical robust accuracy (%) with adversarial training losses. 
We also show the corresponding natural accuracy indicated by the parentheses.



Conclusion

• We propose a unified certified robust training framework that can 
provide a stronger robustness guarantee
• Under this framework, we introduce the DR loss combining the CE 

loss with the modular regularization term for different modules 
specifically to improve the base model robustness




