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We study …

“Application of analytical gradients in PPO framework”

Gradient about world dynamics

e.g., How will the other vehicles react to 
my vehicle’s action, according to traffic model?



We study …

“Application of analytical gradients in PPO framework”

Has been one of the most widely used 
model-free on-policy RL algorithms

First attempt to use analytical gradients in this scenario!



Background

Brax simulator, Google Warp simulator, NVIDIA

(Fully) Differentiable physics simulations provide gradients used for training

However, complete differentiability is often hard to achieve!

Freeman, C. Daniel, et al. "Brax--A Differentiable Physics Engine for Large Scale Rigid Body Simulation." arXiv preprint arXiv:2106.13281 (2021).
https://github.com/NVIDIA/warp



Background

e.g., In traffic environment, lane change is a discrete behavior

Gradients become biased when a vehicle changes its lane

How can we leverage this biased gradient in PPO framework?



Preliminaries: Problem definitions

• Our problem: Markov Decision Process (MDP)

• Goal: Train a parameterized stochastic policy to maximize its expected 
sum of discounted rewards

state action

State transition (dynamics)

reward Initial state distribution

Reward discount

Stochastic policy, θ = parameters Expected sum of discounted rewards



Preliminaries: Analytical gradients

• Assumption: 
• State and action spaces (𝑆, 𝐴) are continuous, differentiable spaces
• Dynamics and reward models (𝑃, 𝑟) are differentiable models

Then, environment provides above basic analytical gradients!
With these, we can compute analytical gradients for advantage functions…

We use Generalized Advantage Estimator (GAE).
Please see our paper for derivation!

Schulman, John, et al. "High-dimensional continuous control using generalized advantage estimation." arXiv preprint arXiv:1506.02438 (2015).



Preliminaries: Policy Updates (RP)

• Reparameterization (RP) Gradient based approach
• Sample an action from our stochastic policy by sampling a random 

variable 𝜖 from another independent distribution 𝑞.

For a given 𝜖 (sampled from 𝑞), 𝑔 maps it to an action that we use.
𝑔 is a bijective function!

Because of bijectivity, above relationship holds.
In our work, we use above 𝑞 and 𝑔.



Preliminaries: Policy Updates (RP)

• Reparameterization (RP) Gradient based approach
• Sample an action from our stochastic policy by sampling a random 

variable 𝜖 from another independent distribution 𝑞.

A Function g is “equivalent” to a stochastic policy if…

Please see our paper (Definition 3.1) for details!



Preliminaries: Policy Updates (RP)

• Reparameterization (RP) Gradient based approach

As shown here, we use deterministic function 𝑔 to compute RP gradient of the current policy,
which can be used for gradient ascent.



Preliminaries: Policy Updates (PPO)

• Proximal Policy Optimization (PPO) based approach

We can evaluate a policy (𝜋!) with our current policy (𝜋"!).
However, since 𝜌#! is not available…

Use this surrogate loss function and maximize it!
It holds as far as 𝜋!  is “not very different” from 𝜋"! .



Preliminaries: Policy Updates (PPO)

• Proximal Policy Optimization (PPO) based approach

PPO enforces 𝜋!  to stay near 𝜋"!  using above condition. 



Approach: 𝛼-policy

• When we are given the gradient of advantage function with respect to 
an action,        we can define an 𝛼-policy (𝜋!) of current policy (𝜋"#) as 
follows: 

1. We define a better action &𝑎 than 𝑎 using gradient

2. Then, intuitively, 𝜋$ can be thought of as a policy that selects
“slightly better” action than 𝜋"!  with the “same” probability!

(Denominator is used to make 𝜋$ a valid policy, which sums to 1)

Please see our paper (Definition 4.1, Lemma 4.2) for details!



𝛼-policy

1. Reward function (black)
2. Probability distribution of original policy (blue)

3. Probability distribution of 𝛼-policies for different 𝛼s (yellow, red)

𝜋$ selects slightly better action than original policy, which ends up in slightly better policy

However, when 𝛼 is large (𝟐𝒆%𝟑), 𝜋$ is not well-defined!



𝛼-policy

Condition to make 𝜋+ a valid policy

* 𝛼 should be sufficiently small!



𝛼-policy (PPO’s viewpoint)

In fact, if 𝛼 > 0 is sufficiently small, 
𝜋! is better than 𝜋"# in the PPO’s framework!



𝛼-policy (PPO’s viewpoint)

Therefore, if we update our policy to 𝛼-policy,
it aligns with PPO’s objective.

However, how can we gain 𝛼-policy?
It has second-order derivative in its definition…



Computing 𝛼-policy

Assumption:

Definition:
Note that 𝑔+ shares the same spirit as 𝜋+ - 

it selects “slightly better” action than the original mapping 𝑔,- for the same 𝜀.



Computing 𝛼-policy

In fact, not only 𝜋! and 𝑔! share the same spirit,
they are “equivalent”!

That is, we can gain 𝜋! by approximating 𝑔! ,
which is possible by minimizing following loss:



𝛼-policy (RP’s viewpoint)

If we use following advantage function for defining 𝑔! ,

The RP gradient corresponds to $%
$#

.

Please see our paper (Lemma 4.6) for details!



𝛼-policy

To sum up, 𝛼-policy is a policy that aligns with
both RP and PPO method, where 𝛼 stands for 

the influence of analytical gradients.

We can approximate 𝛼-policy by minimizing
regression loss function 𝐿.



Algorithm

1. Update current policy to 𝛼-policy

2. Adjust 𝛼 for next iteration

3. Update again using PPO-based approach

PPO can be regarded a safeguard that promises certain amount of policy update
even when the analytical gradients are undesirable and therefore 𝛼 = 0.

Therefore, our algorithm is tightly bounded to PPO!



Algorithm

1. Update current policy to 𝛼-policy

We can do it by minimizing regression loss 𝐿 shown before.



Algorithm

2. Adjust 𝛼 for next iteration

ü Bias : Analytical gradients can be biased, not only explicitly, but also implicitly. 
Use PPO’s formulation to detect biasedness.

ü Variance : Analytical gradients can exhibit exploding gradients. Detect this 
case using our Lemma 4.4.

Please see our paper (Section 4.3.1) for details!

We can estimate the sample variance of 
analytical gradients (upper row) using

statistics we get after we update our policy
(lower row) to 𝛼-policy in step 1 

much more efficiently!



Algorithm

2. Adjust 𝛼 for next iteration

ü Out-of-range-ratio : Since PPO requires the updated policy to stay near 
current policy, we adjust 𝛼 so that 𝛼-policy is not far away from current policy.

Please see our paper (Section 4.3.1) for details!

Adjust 𝛼 to maintain this value under certain threshold!
This is the main reason why our method is tightly bound to PPO.



Algorithm

3. Update again using PPO-based approach

Please see Algorithm 1 for the entire algorithm!

Use this function for importance sampling function to preserve updates from step 1.



Experimental Results

Algorithms used for comparisons

Please see our paper (Appendix 7.4) for details!



Experimental Results: Function Optimization

Smooth landscape,
Smaller variance

Noisy landscape,
Higher variance



Experimental Results: Function Optimization

Faster convergence to better optimal values!



Experimental Results: Function Optimization

Change of 𝛼: Note that higher 𝛼 is maintained in De Jong’s function



Experimental Results: Physics Simulation

Our method achieved far better results than the baseline PPO,
but could not do better than RP in Ant and Hopper.



Experimental Results: Physics Simulation

This is because our method is tightly bound to PPO.
If we do not bound it to PPO, our method performs better.

However, we cannot detect such cases yet, with our current approach…



Experimental Results: Traffic simulation

Our vehicle should intervene other vehicles to regulate speed.



Experimental Results: Traffic simulation

Represents environment with biased gradient

Even though our method uses the biased gradients, since it uses PPO as a safeguard,
our method can still exploit useful information from the biased gradient!



Experimental Results: Traffic simulation

Achieved best results in most of the environments! 



Experimental Results: Computational cost

Since we should compute analytical gradients and do PPO updates,
it is a little bit slower than RP, which also computes analytical gradients.

However, faster than LR+RP, which also combines analytical
gradients with LR gradients, which corresponds to PPO in our case.



Conclusion

• We presented a novel approach to leverage analytical gradients in 
PPO framework.

• We defined 𝛼-policy, where 𝛼 stands for the influence of the analytical 
gradients. We suggested criteria to adaptively change 𝛼 during 
training, to find balance between analytical gradients and PPO.

• We achieved much better learning results than the baseline PPO in 
every environment, even in the challenging environments with biased 
gradients.



Limitations

• Our method is tightly bound to PPO. Therefore, even when the 
analytical gradients are much more useful, we cannot fully utilize 
them.

• Our approach to control 𝛼 is naïve, not optimal – there are still a lot of 
rooms for developing another fine-grained algorithm.



Thank you.


