

Practical Sharpness-Aware Minimization Cannot Converge All the Way to Optima

Dongkuk Si, Chulhee Yun KAIST AI

Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) [Foret et al., 2021]:

$$\min_{x} f^{\text{SAM}}(x) = \min_{x} \max_{\|\epsilon\| \le \rho} f(x + \epsilon)$$

$$\downarrow \qquad \qquad \downarrow$$

$$x_{t+1} = x_t - \eta \nabla f\left(x_t + \rho \frac{\nabla f(x_t)}{\|\nabla f(x_t)\|}\right)$$

 ρ is a perturbation size that is **fixed as a constant** in practice

Problem Setting

GOAL: Investigate SAM's convergence properties across various function classes

▶ Deterministic SAM:

$$x_{t+1} = x_t - \eta \nabla f \left(x_t + \rho \frac{\nabla f(x_t)}{\|\nabla f(x_t)\|} \right)$$

► Stochastic SAM: given $f(x) = \mathbb{E}_{\xi}[l(x;\xi)]$ and $g(x) = \nabla_x l(x;\xi)$,

$$x_{t+1} = x_t - \eta g \left(x_t + \rho \frac{g(x_t)}{\|g(x_t)\|} \right)$$

Focus on Practical Settings: **constant** ρ , **normalization** in ascending step

Problem Setting

GOAL: Investigate SAM's convergence properties across various function classes

For $f: \mathbb{R}^d \to \mathbb{R}$ and $\forall x, y \in \mathbb{R}^d$,

▶ Smoothness: $\exists \beta \geq 0$ such that $\|\nabla f(x) - \nabla f(y)\| \leq \beta \|x - y\|$

► Convexity: $\lambda \in [0,1]$, $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$

► Strong Convexity: $\exists \mu > 0$ such that $f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||^2$

▶ **Lipschitzness**: $\exists L \geq 0$ such that $||f(x) - f(y)|| \leq L||x - y||$

▶ Bounded Gradient Variance: $\exists \sigma \geq 0$ such that $\mathbb{E}_{\xi} \|\nabla f(x) - \nabla l(x; \xi)\|^2 \leq \sigma^2$

Virtual Loss

For continuous 1-dimensional function f, we can define the virtual loss J_f :

Convergence of Deterministic SAM

Convergence of SAM with constant ρ after T steps

Optimizer	Function Class	Convergence Upper/Lower Bounds
Deterministic SAM Deterministic SAM Deterministic SAM Deterministic SAM	β -smooth, μ -strongly convex β -smooth, μ -strongly convex β -smooth, convex β -smooth	$\min_{t \in \{0, \dots, T\}} f(\boldsymbol{x}_t) - f^* = \mathcal{\tilde{O}}\left(\exp(-T) + \frac{1}{T^2}\right)$ $\min_{t \in \{0, \dots, T\}} f(\boldsymbol{x}_t) - f^* = \Omega\left(\frac{1}{T^2}\right)$ $\frac{1}{T} \sum_{t=0}^{T-1} \ \nabla f(\boldsymbol{x}_t)\ ^2 = \mathcal{O}\left(\frac{1}{T} + \frac{1}{\sqrt{T}}\right)$ $\frac{1}{T} \sum_{t=0}^{T-1} \ \nabla f(\boldsymbol{x}_t)\ ^2 \le \mathcal{O}\left(\frac{1}{T}\right) + \beta^2 \rho^2$ Additive factor $\mathcal{O}(\rho^2)$
		Tight!

Non-Convergence Example

The additive factor is **tight** in terms of ρ

Convergence of Deterministic SAM

Convergence of SAM with constant ρ after T steps

	-	
Optimizer	Function Class	Convergence Upper/Lower Bounds
Stochastic SAM	β -smooth, μ -strongly convex	$\mathbb{E}f(\boldsymbol{x}_T) - f^* \leq \tilde{\mathcal{O}}\left(\exp\left(-T\right) + \frac{\left[\sigma^2 - \beta^2 \rho^2\right]_+}{T}\right) + \frac{2\beta^2 \rho^2}{\mu}$
Stochastic SAM	β -smooth, convex	$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \ \nabla f(\boldsymbol{x}_t)\ ^2 \leq \mathcal{O} \left(\frac{1}{T} + \frac{\sqrt{[\sigma^2 - \beta^2 \rho^2]_+}}{\sqrt{T}} \right) + 4\beta^2 \rho^2$
Stochastic SAM	β -smooth, L -Lipschitz	$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[(\ \nabla f(\boldsymbol{x}_t)\ - \beta \rho)^2] \le \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + 5\beta^2 \rho^2$
		Additive factors $\mathcal{O}(\rho^2)$

Non-Convergence Examples

The additive factors are **tight** in terms of ρ

Summary

- The convergence bound of deterministic / stochastic SAM suffers an **inevitable** additive term $\mathcal{O}(\rho^2)$, indicating convergence only up to neighborhoods of optima.
- ▶ Discover even more intriguing results in our paper!

