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Goal: Reduce the memory consumption of optimizer states (in stateful 
optimizers), especially AdamW

For LLaMA-7B: 
- number of parameters: 7B
- number of optimizer states: 14B when fine-

tuned with AdamW (32-bit), 
- memory of optimizer states: about 52.2GB.



Memory Efficient Methods

On optimizer states:
- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
- Factorization-based: Adafactor (Shazeer et al. ICML 2018), SM3 (Anil 

et al. NeurIPS 2019), Extreme Tensoring (Chen et al. ICLR 2020)
- By tuning fewer parameters: LoRA (Hu et al. ICLR 2022), prefix 

tuning (Li et al. 2021) etc.



Factorization-based Method: Adafactor
Shazeer et al. ICML 2018



Factorization-based Method: Adafactor
Shazeer et al. ICML 2018

However, this can only apply to second moments



Quantzation-based Method
Dettmers et al. ICLR 2022
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On optimizer states:
- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
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tuning (Li et al. 2021) etc.

Our 4-bit AdamW



Preliminaries: Quantization

Disentangle quantizer Q(·): normalization N(·) and mapping M(·)
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Disentangle quantizer Q(·): normalization N(·) and mapping M(·)

Normalization: scale each elements of original tensor into the unit interval

Different normalization methods give different quantization error and 
memory overhead.
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Disentangle quantizer Q(·): normalization N(·) and mapping M(·)

Mapping: convert normalized tensors to low-bit integers. 
Given a predefined map 𝐓: 0, 2! − 1 ∩ 𝛧 → [0, 1]

Mapping gives nonlinearity to quantization. The design of T is crucial as it 
could effectively mitigate quantization error.



Quantization
Quantization Mapping: Linear and DE (dynamic exponent)

Notation: We use Norm./Map. to denote quantization methods, e.g., B2048/DE



Compressing First Moment
Observation: complicated outlier patterns



Compressing First Moment

enhance performance and keep overhead under control

Smaller block size of 128 consistently (i.e., B128/DE) 



Compressing Second Moment

Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash: 

w. Transform: ℎ 𝑣 = 1 /( 𝑣 + 10!")

Main bottleneck: zero-point problem



Compressing Second Moment

Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash: 

w. Transform: ℎ 𝑣 = 1 /( 𝑣 + 10!")

Approach:
1. remove zero in quantization map
2. factorization

Main bottleneck: zero-point problem



Pros
- deals with the outliers more 
smartly and effectively 
- better memory efficiency and 
scalable to high dim tensors
- good performance

Cons
- cannot apply to 1-dim tensors 
and/or shape information is not 
available

Compressing Second Moment
New normalization method: rank-1 normalization



Compressing Second Moment
Ablation Experiments



Experiments: Accuracy I
lossless on all fine-tuning tasks and comparable on pretraining tasks

4-bit AdamW:
- 1st:B128/DE
- 2nd:Rank-1/Linear 
4-bit Factor:
- 1st:B128/DE
- 2nd:factorized



Experiments: Accuracy II
performant on instruction fine-tuning tasks across model sizes



Experiments: Efficiency
Memory and Time with different optimizers



Summary

• We propose 4-bit AdamW and 4-bit Factor with quantization and factorization

• We evaluate our 4-bit optimizers on a wide range of tasks to showcase the 
effectiveness and efficiency

• Code released at: https://github.com/thu-ml/low-bit-optimizers

https://github.com/thu-ml/low-bit-optimizers

