
Memory Efficient Optimizers
with 4-bit States

Bingrui Li, Jianfei Chen, Jun Zhu
Tsinghua University

Background
Data memory
- input data and activation in each layer
Model memory
- model parameters, optimizer states (and gradients)
Other (temporary) memory
- GPU kernel, cache, etc.

Background
Data memory
- input data and activation in each layer
Model memory
- model parameters, optimizer states (and gradients)
Other (temporary) memory
- GPU kernel, cache, etc.

Goal: Reduce the memory consumption of optimizer states (in stateful
optimizers), especially AdamW

For LLaMA-7B:
- number of parameters: 7B
- number of optimizer states: 14B when fine-

tuned with AdamW (32-bit),
- memory of optimizer states: about 52.2GB.

Memory Efficient Methods

On optimizer states:
- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
- Factorization-based: Adafactor (Shazeer et al. ICML 2018), SM3 (Anil

et al. NeurIPS 2019), Extreme Tensoring (Chen et al. ICLR 2020)
- By tuning fewer parameters: LoRA (Hu et al. ICLR 2022), prefix

tuning (Li et al. 2021) etc.

Factorization-based Method: Adafactor
Shazeer et al. ICML 2018

Factorization-based Method: Adafactor
Shazeer et al. ICML 2018

However, this can only apply to second moments

Quantzation-based Method
Dettmers et al. ICLR 2022

Memory Efficient Methods

On optimizer states:
- Quantization-based: 8-bit Adam (Dettmers et al. ICLR 2022)
- Factorization-based: Adafactor (Shazeer et al. ICML 2018), SM3 (Anil

et al. NeurIPS 2019), Extreme Tensoring (Chen et al. ICLR 2020)
- By tuning fewer parameters: LoRA (Hu et al. ICLR 2022), prefix

tuning (Li et al. 2021) etc.

Our 4-bit AdamW

Preliminaries: Quantization

Disentangle quantizer Q(·): normalization N(·) and mapping M(·)

Preliminaries: Quantization

Disentangle quantizer Q(·): normalization N(·) and mapping M(·)

Normalization: scale each elements of original tensor into the unit interval

Different normalization methods give different quantization error and
memory overhead.

Preliminaries: Quantization

Disentangle quantizer Q(·): normalization N(·) and mapping M(·)

Mapping: convert normalized tensors to low-bit integers.
Given a predefined map 𝐓: 0, 2! − 1 ∩ 𝛧 → [0, 1]

Mapping gives nonlinearity to quantization. The design of T is crucial as it
could effectively mitigate quantization error.

Quantization
Quantization Mapping: Linear and DE (dynamic exponent)

Notation: We use Norm./Map. to denote quantization methods, e.g., B2048/DE

Compressing First Moment
Observation: complicated outlier patterns

Compressing First Moment

enhance performance and keep overhead under control

Smaller block size of 128 consistently (i.e., B128/DE)

Compressing Second Moment

Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash:

w. Transform: ℎ 𝑣 = 1 /(𝑣 + 10!")

Main bottleneck: zero-point problem

Compressing Second Moment

Empirically, zero is often the most frequent element in quantization.
But for Adam second moment, zero-point causes crash:

w. Transform: ℎ 𝑣 = 1 /(𝑣 + 10!")

Approach:
1. remove zero in quantization map
2. factorization

Main bottleneck: zero-point problem

Pros
- deals with the outliers more
smartly and effectively
- better memory efficiency and
scalable to high dim tensors
- good performance

Cons
- cannot apply to 1-dim tensors
and/or shape information is not
available

Compressing Second Moment
New normalization method: rank-1 normalization

Compressing Second Moment
Ablation Experiments

Experiments: Accuracy I
lossless on all fine-tuning tasks and comparable on pretraining tasks

4-bit AdamW:
- 1st:B128/DE
- 2nd:Rank-1/Linear
4-bit Factor:
- 1st:B128/DE
- 2nd:factorized

Experiments: Accuracy II
performant on instruction fine-tuning tasks across model sizes

Experiments: Efficiency
Memory and Time with different optimizers

Summary

• We propose 4-bit AdamW and 4-bit Factor with quantization and factorization

• We evaluate our 4-bit optimizers on a wide range of tasks to showcase the
effectiveness and efficiency

• Code released at: https://github.com/thu-ml/low-bit-optimizers

https://github.com/thu-ml/low-bit-optimizers

