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Problem Setup

Crowdsourcing:
Each data item is labeled by multiple
annotators with diverse expertise

Noisy training data D = {x𝑖 , ỹ(1)
𝑖
, . . . , ỹ(𝑅)

𝑖
}𝑁
𝑖=1

X ⊂ R𝑝: feature space
Y = {1, . . . , 𝐾}: label space
𝑅: number of annotators
x𝑖 ∈ X: input data
y𝑖 ∈ Y: unobserved true label

ỹ
(𝑟 )
𝑖

∈ Y: the label given by the 𝑟th annotator
with 𝑟 ∈ {1, . . . , 𝑅}

Goal: learn a classifier which correctly labels
the new input data
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Noisy Label Generation Process

Assumption: the 𝑅 annotators independently label the instances

Noisy label generation model:

P(ỹ(1) , .., ỹ(𝑅) |x) =
𝑅∏
𝑟=1

P(ỹ(𝑟 ) |x) =
𝑅∏
𝑟=1

∑︁
𝑘∈Y

{
P(ỹ(𝑟 ) |y = 𝑘, x) 𝑃(y = 𝑘 |x)

}
instance-dependent noise transition matrix for the 𝑟th annotator

𝑓
𝑘,𝑟
0 (x): distribution of ỹ(𝑟 ) |{y = 𝑘, x}, modeled by 𝑓

𝑘,𝑟
θ

(x) base model ℎ(·;ϑ)
(true label predictor)

Issues about instance-dependent transition matrices:

Most available methods require the instance independent assumption: P(ỹ (𝑟 ) |y = 𝑘, x) = P(ỹ (𝑟 ) |y = 𝑘 );
however, the instance dependent assumption is more realistic
Modeling the instance-dependent transition matrix is challenging and remains relatively less explored
Theoretical characterization of the distance of the noise model and the true transition matrix
remains absent in the literature



Background and Motivation Theoretical Analysis Method Empirical Results Summary

Approximate the Instance-Dependent Noise Transition Matrices

Bayesian network:

Deploy a set of (𝛿-pseudo) anchor points D0 learned from noisy training data

An instance x is defined to be an (𝛿-pseudo) anchor point of class 𝑘 if P(𝑦 = 𝑘 |x) = 1 (P(𝑦 = 𝑘 |x) ≥ 𝛿)

The subsample size 𝑛 of D0 is relatively small compared to the main sample size 𝑁

Employ a hierarchical spike and slab prior on the network parameters

Sparse Bayesian network 𝑓 𝑘,𝑟
θ

with θ ∈ Θ

Posterior consistency result:

The sparse noise transition model is close to the underlying true transition matrix with respect to
the Hellinger distance under mild conditions

Theorem 1

Let 𝑑 (·, ·) denote the Hellinger distance. Under regularity conditions, there exists a sequence of
constants {𝜖2𝑛}∞𝑛=1 satisfying lim𝑛→∞ 𝜖𝑛 = 0 and lim𝑛→∞ 𝑛𝜖2𝑛 = ∞, such that for any 𝑘 ∈ {1, . . . , 𝐾}
and 𝑟 ∈ {1, . . . , 𝑅}, with probability tending to 1, the posterior measure satisfies

Π

{
θ ∈ Θ : 𝑑 ( 𝑓 (𝑘,𝑟 )

θ
, 𝑓

(𝑘,𝑟 )
0 ) > 𝑀𝑛𝜖𝑛 |D0

}
→ 0 as any 𝑀𝑛 → ∞.
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Pairwise Likelihood Ratio Test for Label Correction

Reformulate the label correction process:
Selecting the label for the instance x𝑖 from {𝑔, 𝑔′}, is equivalent to choosing from the two
competitors P(ỹ|y = 𝑔, x𝑖) and P(ỹ|y = 𝑔′, x𝑖), where 1 ≤ 𝑔 < 𝑔′ ≤ 𝐾

Hypothesis testing: 𝐻𝑔 : ỹ𝑖 |{y𝑖 , x𝑖} ∼ P(ỹ|y = 𝑔, x𝑖) versus 𝐻𝑔′ : ỹ𝑖 |{y𝑖 , x𝑖} ∼ P(ỹ|y = 𝑔′, x𝑖)
Label correction method:

(Neyman-Pearson Lemma) Set the estimated label of x𝑖 to be y𝑖 = 𝑔 if

ℏ𝑖,𝑔
∏𝑅
𝑟=1

∏𝐾
𝑙=1

{
𝜏
(𝑟 )
𝑖,𝑔𝑙

}1(𝑦 (𝑟 )
𝑖

=𝑙)

ℏ𝑖,𝑔′
∏𝑅
𝑟=1

∏𝐾
𝑙=1

{
𝜏
(𝑟 )
𝑖,𝑔′𝑙

}1(𝑦 (𝑟 )
𝑖

=𝑙)
> Ω for any 𝑔′ ≠ 𝑔

ℏ𝑖𝑔: class prior for the ground truth label for the 𝑖th task for 𝑔 ∈ {1, . . . , 𝐾}
=⇒ the predictions of base classifiers

τ
(𝑟 )
𝑖,𝑘𝑙

: the 𝑙th element of 𝑓
(𝑘,𝑟 )
θ

(x𝑖) for 𝑘, 𝑙 ∈ {1, . . . , 𝐾} and 𝑟 ∈ {1, . . . , 𝑅}
=⇒ the maximum a posteriori (MAP) estimate

Ω: pre-specified threshold

Theorem 2:
Information-theoretic bounds on the Bayes error
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Empirical Results on CIFAR10 with Varying Number of Annotators
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Figure 1: Average accuracy.
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Figure 2: Average estimation error of noise transition matrices.

With varying number of
annotators, the proposed
method

achieves the highest
average test accuracy;

leads to smaller
estimation error in
most of the cases,
especially when the
noise rate is high.
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Summary

In this work,

We explore the challenging problem of learning with instance-dependent crowdsourced noisy
annotations

We formulate the annotator-specific noise transition matrix in the Bayesian framework

We theoretically characterize the closeness of the proposed sparse Bayesian model and the
underlying annotator confusions with respect to the Hellinger distance

We develop a novel label correction algorithm by aggregating the noisy annotations using the
pairwise likelihood ratio test, and identify information-theoretic bounds on the Bayes error

Numerical experiments demonstrate that the proposed method outperforms the competing
methods



Background and Motivation Theoretical Analysis Method Empirical Results Summary

Thank You
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