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Simulation for Robust Image Perception in Robots

e Modern camera-based perception systems are not robust under different lighting
e C(Collecting data under various lighting are expensive and time-consuming
e \We need scalable and affordable way to generate experiences - Simulation!

=

Real Data Collection

Simulation Variations (Actor cut in + lighting changes)



Existing Simulators Lack Scale and Diversity

e Standard game engines for simulation such as CARLA [1]:

- not scalable, lacking diversity, unrealistic
e Limited number of manually designed assets and lighting conditions
e Trained perception system generalizes poorly to the real world [2]

[1]1 CARLA: An open urban driving simulator. [Dosovitskiy, et al., CoRL 2017]
[2] Enhancing photorealism enhancement. [Richter et al., PAMI 2021]



Existing Simulators Bake the Lighting

e Data-driven simulators build digital twins with baked lighting
- Simulation limited to one single scene and cannot generalize
- No lighting simulation (shadows, inter-object lighting effects)

Input Video Output Simulated Video
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AADS [2] VISTA 2.0 [3] Neural Scene Graph [4] UniSim [5]

[1] GeoSim: Realistic Video Simulation via Geometry-Aware Composition for Self-Driving. [Chen at al., CVPR 2021]

[2] AADS: Augmented autonomous driving simulation using data-driven algorithms. [Li et al., Sci. Robotics. 2021]

[3] VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and Policy Learning for Autonomous Vehicles [Amini et al., ICRA 2022]
[4] Neural Scene Graphs for Dynamic Scenes. [Ost et al., CVPR 2021]

[5] UniSim: A Neural Closed-Loop Sensor Simulator. [Yang, et al. CVPR 2023]



Our Goal

e (Create a diverse, controllable, and realistic simulator that can generate
camera data of scenes at scale under diverse lighting conditions
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Step 1: Building Relightable Digital Twins of the Real World

e Neural scene reconstruction to recover scene geometry and texture

Sensor data



Step 1: Building Relightable Digital Twins of the Real World

e Neural scene reconstruction to recover scene geometry and texture
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Sensor data

Compositional neural radiance field (background + actors)
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e Neural scene reconstruction to recover scene geometry and texture
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Step 1: Building Relightable Digital Twins of the Real World

e Neural lighting simulation to recover the HDR sky dome
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Step 1: Building Relightable Digital Twins of the Real World

e Neural lighting simulation to recover the HDR sky dome

Panorama Completion
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Step 1: Building Relightable Digital Twins of the Real World

e Neural lighting simulation to recover the HDR sky dome

Panorama Completion Sky Dome Estimator
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Step 1: Building Relightable Digital Twins of the Real World

e Neural scene reconstruction to recover scene geometry and texture
e Neural lighting simulation to recover the HDR sky dome

N L Neural Scene

\\ Reconstruction

Neural Lighting
Estimation

Sensor data

Relightable digital twins (geometry, texture, lighting)



Step 2: Neural Lighting Simulation of Dynamic Urban Scenes

e Derive augmented reality representation from digital twins

Digital »| Aug.
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Step 2: Neural Lighting Simulation of Dynamic Urban Scenes

e Derive augmented reality representation from digital twins
e Generate lighting-relevant data with physically-based rendering
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Step 2: Neural Lighting Simulation of Dynamic Urban Scenes

e Derive augmented reality representation from digital twins
e Generate lighting-relevant data with physically-based rendering
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Step 2: Neural Lighting Simulation of Dynamic Urban Scenes

Derive augmented reality representation from digital twins
Generate lighting-relevant data with physically-based rendering
Neural deferred rendering for lighting simulation
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Scene Relighting

Real Video and Estimated Source Lighting Simulated Video with Target Lighting
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Shadow Editing

Real Image and Estimated Source Lighting Simulated Video with Rotated Lighting
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Lighting-aware Actor Insertion




Controllable Camera Simulation
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Scene Relighting C + Intensity Editing




Controllable Camera Simulation — variation 1
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Controllable Camera Simulation — variation 2
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Lighting Estimation Evaluation via Actor Insertion

Original SOLD-Net

*HDR skydome only



Lighting Estimation Evaluation via Actor Insertion

Original SOLD-Net

*HDR skydome only



Generalization on nuScenes

LightSim Simulated




Downstream Perception Training

e Realistic lighting simulation can help improve the performance of downstream
object detection task under unseen lighting conditions

Model mAP (%)
Real 32.1

Real + Color aug. [41] 33.8 (+1.7)
Real + Sim (Self-OSR) 30.3 (—1.8)
Real + Sim (EPE) 32.5 (+0.4)

Real + Sim (Color Transfer) 35.1 (+3.0)

| Real + Sim (Ours) 36.6 (+4.5)




Comparison in Scene Relighting

L

Source Image &Target HDR Self-OSR NeRF-OSR Color Transfer




Ablation Study

e (Content-preserving loss

Aedge = 0 ours (Aegge = 400)

FID =109.8 FID =57.3 FID =55.4




Ablation Study

® sim-to-real and identity pairs

wlo sim-real pairs wl/o identity pairs

FID =60.9 FID =62.5 FID =55.4




Ablation Study

e Rendering buffers and shadow maps

w/o rendering buffers wl/o shadow maps
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Thank you!
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