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The inputs we’d like to work with keep getting bigger… 
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1,000 tokens 10,000 tokens 100,000 tokens

Introduction 



…and our models don’t scale that well
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100,000 tokens

● Sparse attention 
○ Pretraining is hugely expensive
○ Fixed maximum length

● Hierarchical summarization
○ Cascading errors
○ Can’t see the big picture

● ???

Introduction 

The length of the context 
window is fixed… what 
about the content? 



Retrieval-augmented generation
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100,000 tokens

RETRO, Memorizing Transformers, etc: 

● maintain a “base context” and augment with 
retrieved text 

○ Unlimiformer has no “base context”
● add a layer (or a few layers) that cross attend to 

both external memory and the context
○ Unlimiformer cross attends only to external memory at 

every layer 
● retrieve from set of relevant documents for QA or 

full pretraining corpus/recent examples for LM
○ Unlimiformer retrieves from the same long sequence
○ The datastore is static and unique for a single example

Introduction 



Unlimiformer
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summary

Architecture



How do we do encoding?
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Architecture

      a             b c

      d             e f

Naive approach: no overlap in chunks

Number of encoder passes: ⌈input len / encoder max len⌉



How do we do encoding?
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Architecture

      a             b c
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Naive approach: no overlap in chunks
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What about context?
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embeddings with left+right context:

f

d
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aembeddings with no left context:

embeddings with no right context: c
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What about positional embeddings?

encoding:
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Architecture

positional embeddings:

   1        2 3    1             2 3

   a        b c    d             e f

      a             b c

      d             e f



How do we do encoding?
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Architecture

      a             b c

      b             c d

      c             d e

      d             e f

Overlapping chunks: all tokens in the middle 
of the input have left and right context!

in practice: use embeddings from 
middle half of window

Number of encoder passes: ⌈input len / (0.5 * encoder max len)⌉ - 1



How do we do encoding?
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Architecture
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What about context?
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embeddings with left+right context: c
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aembeddings with no left context:

embeddings with no right context: f



What about positional embeddings?

encoding:
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Architecture

      a             b c
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positional embeddings:

   1        2 2    2             2 3

   a        b c    d             e f

also… 

the decoder positional embeddings are 
unaffected!



What is the datastore?
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Architecture

FAISS search:
● Supports datastores on GPU, 

CPU, or disk
● Approximate
● Sublinear



How do we choose the context window?
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Architecture



decoder hidden state encoder hidden state
layer specific
head specific

We can keep a single datastore of 
the encoded hidden statesProject the query differently

for every layer/head

Memorizing Transformers  (Wu et al. 
ICLR’2022)

kept two datastores for each <layer,head> pair
Overall datastores: 2 X layers X heads

How do we choose the context window? cross-attention

Architecture



How do we choose the context window?
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Architecture

Cross attention



How do we do efficient search?
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Architecture

FAISS search:
● Supports datastores on GPU, 

CPU, or disk
● Approximate
● Sublinear



Data augmentation (not Unlimiformer-specific!)
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full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

full-book summary

standard finetuning

chunked finetuning

Training



How do we train Unlimiformer?
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Training

Running example: 
book summarization

117,645 
words

Summarize:



Normal training: truncating all inputs

During training:
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During early stopping:

Training

During test-time:



Adding Unlimiformer after training

During training:
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During early stopping:

Training

During test-time:



Low cost training: Unlimiformer-aware early stopping

During training:
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During early stopping:

Training

During test-time:



Higher cost training methods

During training:
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During early stopping:

Training

During test-time:



Higher cost training: which embeddings to backprop 
through?
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Training



Higher cost training: which embeddings to backprop 
through?
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Training

   a        b c    d             e f

array of embeddings

?

   a        b c    d             e f



Higher cost training: retrieval training
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Training

   a        b c    d             e f

array of embeddings

attention



Higher cost training: random-encoded
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Training

   a        b c    d             e f

array of embeddings

randomly 
select

   a        b c    d             e f



Higher cost training: alternating
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Training

   a        b c    d             e f

array of embeddings

attention / 
randomly 

select



Results on SummScreen
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Results

Domain: TV 
screenplays

Avg input 
length: 8,987

Avg output 
length: 137



Results on GovReport
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Results

Domain: 
government 
reports

Avg input 
length: 9,616

Avg output 
length: 597



Comparison to other long-range methods [GovReport]
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Results

Domain: 
government 
reports

Avg input 
length: 9,616

Avg output 
length: 597



Results on BookSum
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Results

Domain: 
public-domain 
novels

Avg input 
length: 143,301

Avg output 
length: 1,294



EntMent 
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Idea: important to include 
entities from the gold 
summary

Results



Computational cost

Additional cost from:

● Encoding additional 
input

● Datastore construction
● Datastore search
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Results



What’s the max input length?
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How big is your 
computer’s 
memory?

Conclusion



What (could be) next?

● Decoder-only models with Unlimiformer: LLaMA and Falcon
● Multi-doc summarization with Unlimiformer

● Better evaluation for long text
● Generation of long text
● Training to include all input
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Conclusion
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questions?


