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Introduction -- Background

e Stable Diffusion ( ) Latent Space ") (Conditioning

* As one of the most popular text-to-image

Denoising U-Net €g Text
Repres
S — entations

&
=¥

generators, Stable Diffusion 1s built on the Latent

Diffusion Model (LDM), which consists of a VAE — AP
<o T

denoising step crossattention  switch  skip connection concat ~——

compressor, a condition encoder, and a U-Net

Latent Diffusion Model
denoiser. (Rombach, Robin, ef al., 2022, CVPR)
* Text Encoder L J _
» Stable Diffusion utilizes the CLIP model as its N f

condition encoder, the text prompt is coded by the
CLIP text transformer and then input into the

cross-attention layers of U-Net. Stable Diffusion
(Rombach, Robin, et al., 2022, CVPR)
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Introduction -- Findings

e Stable Diffusion Generation

* The generation results are highly related to the end-

<sos> cat on bed <eos>

token embedding.

* Masking the word-tokens in a sentence does not s,

m <sos> cat on bed <eos>
influence the generation results severely. Attention Visualization of Stable Diffusion.
* Embedding Conversion in CLIP OSpass
* Image embeddings and text embeddings are
T-Space T -Space

proj ected Into a common Space n the CLIP plpehne. CLIP Image Transformer CLIP Text Transformer

* The image embedding can be converted into text CLIP,() CLIP,()
embedding space with just a pseudo-inverse matrix. Input Paich Sequence Input Text Sequence

The architecture of CLIP model.
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Introduction -- Motivation
1 C-Space - T -Space — Cross-Attention Layers :
* Image Input for Stable Diffusion P verse Matrix Transfer [ 1 1p oxt Transformer | _ [
L : : CLIP
* Findings: 1) image embedding can be converted to text ()

Input Text Sequence
t-1

I3poduy
HAVA
N

<
VAE
Decoder
NN
syd01g

end-token. 2) generation can just rely on end-token

Surndweg-umoq
IN-N
U-Net

Up-Sampling
Blocks
N

0 t
(20210002002 ]

Diffusion Process

embedding.

* A naive intuition is that the image can directly input into
the Stable Diffusion.
* Stable Diffusion Reimagine (SD-R)

* Generating multiple variations from an uploaded image.

* The algorithm is built on the Stable-unCLIP model,
which fine-tunes the Stable Diffusion to adapt to the
CLIP visual embeddings.

SD-R is an algorithm for image variation.
https://stability.ai/news/stable-diffusion-reimagine
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Related Works — Image Variation & Customized Generation

* Image Variation
* Generating images similar to the reference image.

* SD-R (Rombach, Robin, et al., 2022, CVPR) needs expensive fine-tuning, which requires 200,000 GPU hours.

* Customized Generation
* Synthesizing specific objects or persons.

* DreamBooth (Ruiz, Nataniel, et al., 2023, CVPR), Textual Inversion (Gal, Rinon, et al., 2022, ICLR), and Custom Diffusion (Kumari,
Nupur, et al., 2023, CVPR) are recent methods.
* Image Editing
* Attention-based methods: Prompt-to-Prompt (Hertz, Amir, ef al., 2022, ICLR), Plug-and-Play (Tumanyan, Narek, ef al., 2023, CVPR),

etc.

* Inversion-based methods: Null-Text Inversion (Mokady, Ron, et al., 2023, CVPR), Pix2Pix-Zero (Parmar, Gaurav, et al., 2023,
SIGGRAPH), and etc.

* InstructPix2Pix (Brooks, Tim, et al., 2023, CVPR) creates a dataset of image editing and fine-tunes Stable Diffusion for editing.
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Methodology — SD-IPC
* Image-to-Prompt Conversion (SD-IPC) - *
C-Space S S

* Moore-Penrose pseudo-inverse.

%‘

£ : ; {eos) 7-Space T -Space
Tre 7 T Vi fa = AT
e o CLIP Image Transformer CLIP Text Transformer
eos ” ffc || +gc cnvr + -1
tict< > ” o ” W flmg ftxt t Where W (VVtTVI/t) WtT' CLIPI (') CLIPt (')
img
) Constructmg converted image prompl. Input Patch Sequence Input Text Sequence
._ 0 <s0s> 1w, t,(eos) 76,<eos>
L= L R AL ]’ Converting image embedding to text space by a pseudo-inverse matrix.
fl — _f0,<s0s> @ ft,<eos> f76,<eos>:|
ixt ° txt ’ 2% Tixt 2% Tixt >
o - golo) i) gt Emb. Space | Acc@l  Acc@5 TR@I TR@5 IR@1 IR@5
ot 2ot 2t Tt }’ C-space 71.41 91.78 74.58 92.98 55.54 82.39
f-t t = fO ,(sos) , ftl tcnvrt . f:f ,cnvrt :I , T‘SP&C& 6948 9062 7 1 62 9206 5482 8220
ciit [ ¢0s08) gl toom 76 ,comb No performance loss after conversion to text embedding space.
ftxt - ftxt > ftxt 2000 ftxt * ftxt .
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Methodology — SD-IPC-FT

* Fine-tuning with Image-to-Prompt Conversion

* Approximation error in SD-IPC.

Input Images

e It is crucial to have a method that allows control

of the content we wish to preserve, e.g. objects, g
sl
scenes, styles, or identities.
* CLIP prompt tuning & U-Net cross-attention é
layers finetuning. E
7.0}

2 2
B . . [He —€, (Zt,cimg (xref)at)H } +B_,, . [He —€, (zt,ctxt(ptxt),t)H J

- )

. v

Finetuning \vrvith SD-IPC Regularization term with text

SD-IPC-FT
(Ours)

ImageNet Finetuned Places365 Finetuned

SD-IPC-FT can alleviate the error and preserve specific content.
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Methodology — SD-IPC-CT

Training SD-IPC-FT  Custom SD-IPC-FT  Custom SD-IPC-FT Custom

‘Ours! Diffusion

L3 L3 L i i Dﬂ
 Fast Update for Customized Generation N e U | g ﬁ

“Rainbow color hair”

* Achieving customized generation by online

update with SD-IPC.

* Benefiting from the good initialization of SD-IPC,

our method can generate customized images with
much fewer updates (30 iterations vs. 250
iterations).

* Quantitative analysis with the benchmark in

1th0ut Editing “On the bed”

DreamBooth.

SD-IPC-CT can get better performance with few updates.
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Experimental Results — Image Variation

5

* Our SD-IPC holds the same performance &3
with text-to-image Stable Diffusion. 7
=

""-;-. 3
a
w2
Methods FID CLIP-Score o
SD w/ Text 23.65 70.15 2

SD-IPC (Ours) | 24.78 73.57

Our SD-IPC is close to the original Stable Diffusionon =
FID and CLIP-Score. g
o
&
=

m L

Image variation examples.
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Experimental Results — Text-edited Image Variation

* Our SD-IPC-FT gets superior editing performance compared to

Method CLIP-T
SD-R. SD-IPC 26.84
SD-IPC-FT 28.69
* SD-R fails in image editing, the results only show the variation SD-R 26.01
but without editing. Even SD-IPC slightly outperforms SD-R. Superior editing performance
of SD-IPC-FT.
Input Editing SD-IPC SD-IPC
Images Text HEIEE -FT (C) -FT (U) SRHESR TR
with a
mountain in
the background.

with a city in | 8
the background.

Text editing performance. SD-R is prone to ignore the text condition.
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Experimental Results — Customized Generation

2 A[V]catona A [V] cat A[V] cat with A [V]cat with
A [V]eatun cobblestone floating on top a blue house in a wheat field in A purple [V]

B street. of water.  the background. the background. cat

* DreamBooth is limited on editing, Textual

Inversion and Custom Diffusion are challenging _
SD-IPC-CT |

on subject details preservation. (Ours)
*  Our SD-IPC-CT strikes a balance between
subject fidelity and editing performance. el
Methods DNIO CLIP-I CLIP-T  Custom Pa - | o
DreamBooth 60.11 T7.78 25.81 Diffusion = ? “"-!--— ‘i
Textual Inversion 25.11 62.44 29.53 ; : . "
Custom Diffusion 39.67 68.37 30.90
SD-IPC'CT (OUI'S) 50.25 7459 2814 Textual
Inversion

SD-IPC-CT shows both good identity preservation
and good editing performance.

Example of DreamBooth benchmark. DreamBooth overfits the input images, while
Textual Inversion and Custom Diffusion can not preserve the subject.
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Experimental Results — Ablation Study

* CLIP prompt tuning & U-Net cross-

attention layers finetuning bot/

contribute to extract correct information.

* Replacing our pseudo-inverse matrix

with a F'C layer leads to overfitting.

Input
Images

SD-IPC
FT(C)

SD-IPC
-FT(U)

SD-IPC

SD-IPC FCO

SD-IPC-FT SD-IPC-FC

- —

Visualization of image variation with different fine-tuning settings.

Method DNIO  CLIP-I  CLIP-T Method DNIO CLIP-I  CLIP-T
SD-1PC 460  77.44 25.47 SD-IPC 31.09  68.66 26.84
SD-IPC-FT (C) | 49.11  76.51 25.82 SD-IPC-FT (C) | 29.10  67.03 27.99
SD-IPC-FT (U) | 4853  79.06  26.17 SD-IPC-FT (U) | 35.21  69.99 28.56
SD-IPC-FT 52.03 79.59 25.90 SD-IPC-FT 40.28 71.97 28.69

Quantitative results of image variation.

Quantitative results of text-edited image variation.



XIDIAN UNIVERSITY ADELAIDE  Learning

= atr Australian
( w % ’%ch ‘f -ﬁ\‘}: /}? Institute
THE UNIVERSITY for Machine

}.. NEURAL INFORMATION
;’,i. PROCESSING SYSTEMS
[J

Future Directions

* Better editing performance.

e Multi-concept generation.

* Story generation with consistency.

* Feature explainability of Stable
Diffusion & CLIP.

Image-to-prompt pathway in CLIP-
based or LDM-based models.

* A little robot named Rusty went on an adventure to a big city.
* The robot found no other robot in the city but only people.

* The robot went to the village to find other robots.

* Then the robot went to the river.

Finally, the robot found his friends.

(]
|

SD w/ Text

SD-IPC-FT
(Ours)

Story generation example.
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Thank you!
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