On permutation symmetries
in Bayesian neural network posteriors:
a variational perspective

Simone Rossi*, Ankit Singh?, Thomas Hannagan*

*Stellantis (France), $Stellantis (India)



Introduction ®

Motivating observation STELEANTIS

Observation: Neural networks have many
symmetries that are functionally equivalent.
Recent evidence that SGD solutions are linearly
connected if we account for permutations sym-
metries.

Ainsworth, Samuel, Hayase, Jonathan, and Srinivasa, Siddhartha. 2023.
Entezari, Rahim et al. 2022.
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Introduction ®

Motivating observation STELEANTIS

Observation: Neural networks have many Log-posterior for CIFAR10

symmetries that are functionally equivalent.
Recent evidence that SGD solutions are linearly
connected if we account for permutations sym-
metries.

Question: Do BNNs (and variational inference)
share the same linearly connected behavior after
accounting for functionally equivalent permuta-
tions?

Conjecture: Yes

Ainsworth, Samuel, Hayase, Jonathan, and Srinivasa, Siddhartha. 2023.
Entezari, Rahim et al. 2022.
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Aligning distributions @0

Building symmetries with weight permutations STELEANTIS

> Given 0 and P, build ' as in the figure O
> Given ¢, define Pq; the push-forward O
distribution for 6’ =
pw O
> By construction, Pxq1 is functionally O O
equivalent to ¢1 O
q(£(8,-) = q(f(0',-)). M
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Aligning distributions O®

Finding symmetries by looking at permutations STELEANTIS

Assume two independently trained VI solutions ¢y and ¢;

Objective

Given qg and ¢y, find P st. Pyqq, functionally equivalent to ¢y, is aligned to go.

argmanQ (Pyq1,q0) = ar{gn}an2 (P1#q§ ),q[() )> + W22 <(P2 o PIT)# q§2),q(()2)>

PES(d)
o WS ((Pgl>#Q§L)7Q(()L)> :

Solution: We approximate the optimization with a coordinate descent algorithm that
converges to a local minimum of the Wasserstein distance.
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Experiments @

Low barrier solutions

ResNet20 on CIFAR10

MLP on MNIST -
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- Loss barriers always appear between two solutions in the standard VI approach
- With alignment we can find solutions with zero loss barrier for MLPs and nearly-zero
loss barrier for ResNet20.
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On permutation symmetries in
Bayesian neural network
posteriors: a variational

perspective

Follow the QR code for the poster
schedule and location

STELEANTIS


https://neurips.cc/virtual/2023/poster/70634
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