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Motivating observation

Observation: Neural networks have many
symmetries that are functionally equivalent.
Recent evidence that SGD solutions are linearly
connected if we account for permutations sym-
metries.

Question: Do BNNs (and variational inference)
share the same linearly connected behavior after
accounting for functionally equivalent permuta-
tions?

Conjecture: Yes
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Building symmetries with weight permutations

→ Given θ and P , build θ′ as in the figure

→ Given q1, define P#q1 the push-forward
distribution for θ′

→ By construction, P#q1 is functionally
equivalent to q1

q(f(θ, ·)) = q(f(θ′, ·)) . (1)
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Finding symmetries by looking at permutations

Assume two independently trained VI solutions q0 and q1

Objective

Given q0 and q1, find P s.t. P#q1, functionally equivalent to q1, is aligned to q0.

arg min
P∈S(d)

W2
2 (P#q1, q0) = arg min

{Pi}
W2

2

(
P1#q

(1)
1 , q

(1)
0

)
+W2

2

((
P2 ◦ P⊤

1

)
#
q
(2)
1 , q

(2)
0

)
+ · · ·+W2

2

((
P⊤
L−1

)
#
q
(L)
1 , q

(L)
0

)
,

Solution: We approximate the optimization with a coordinate descent algorithm that
converges to a local minimum of the Wasserstein distance.
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Low barrier solutions
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→ Loss barriers always appear between two solutions in the standard VI approach
→ With alignment we can find solutions with zero loss barrier for MLPs and nearly-zero
loss barrier for ResNet20.
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Posterior without alignment

3.966 3.962 3.958
×107(a)

Posterior with alignment
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×107(b)

(a) (b)

q0 q0
qτ P#qτ

q1 P#q1

Note: τ = 0.5

Figure 6: Posterior density visualization. Analysis of the log-posterior computed for ResNet20. Samples from
q0 and q1 are connected by lower density regions, while q0 and P#q1 are not.
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Figure 7: Effect of prior variance. After distribution alignment, prior variance has low effect in finding
zero-loss barriers, while with naive interpolation we see a decreasing trend the higher the variance is.

We speculate that this might be due to the limiting behavior of Bayesian neural networks, which makes
the posterior landscape Gaussian-like [48, 40]. While this does not fully explain the phenomenon
observed, the existing connections between BNNs and non-parametric models, like Gaussian Processes
(GPs) [83] and deep Gaussian processes (DGPs) [22, 20, 28, 93], can provide additional insights on
the role of symmetries in weight space [80].

Finally, as an additional check, we analyze the log-posterior with and without alignment by projecting
the density into two dimensional slices, following the setup in [47, 36]. We study the two dimensional
subspace of the parameter space supported by the hyperplane H = {θ ∈ Rd | θ = aθa + bθb +
(1 − a − b)θc}, where a, b ∈ R and θa, θb and θc are the samples either from q0, q1 and qτ without
alignment or from q0, P#q1 and P#qτ with alignment. With this configuration, all three samples
always lie on this hyper-plane. In Fig. 6, we present the visualization of ResNet20 trained on
CIFAR10. We see that the samples from q0 and P#q1 are connected by higher density regions than
the ones between q0 and q1. This is in line with the results in Fig. 4, where we see that the loss barrier
is lower after alignment.

5.2 Analyzing the effect of the prior and testing the cold posterior effect

In all previous experiments we used a Gaussian prior N (0, α2I) with fixed α2; now we study the
effect of a varying prior variance α2 on the behavior of the loss barriers. We experiment this on a
MLP trained on MNIST and Fashion-MNIST and on a ResNet20 (width x8) on CIFAR10. We report
the results in Fig. 7. We can appreciate two behaviors: with alignment, there is no measurable effect
of using different variances in finding zero-barrier solutions; on the contrary, without alignment we
see that naive VI solutions are easier to interpolate with lower barrier when the prior is more diffused.
At the same time, we see that higher variances produce bigger gaps between train barriers and test
barriers. We speculate that this is due to overfitting happening with more relaxed priors, which makes
low-barrier (but low-likelihood) solutions easier to find.

Additionally, several previous works have analyzed the effect of tempering the posterior in BNNs [106,
112, 110, 47]. Specifically, we are interested in the distribution pT (θ | Y ) ∝ (p(Y | θ, X)p(θ))1/T ,
where T is known as the temperature. Note that starting from the above definition, we can write an
equivalent ELBO for VI which takes into account T . For T < 1, we have cold posteriors, which are
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Algorithm 1: Algorithm to align variational inference solutions
Data: Variational inference solutions q0 and q1
Result: Permutation matrices P i

1 P i ← I , ∀i ∈ {1, . . . , L};
2 while not converged do
3 for i ∈ RandomPerm(1, . . . , L− 1) do
4 P i = arg max ⟨P i|⋆⟩, where ⋆ is the r.h.s. of Eq. (19)
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Figure 4: Zero barrier solutions. Comparison of loss barriers for standard VI (gray) and VI with alignment
(orange). While loss barriers always appear between two solutions in the standard VI approach, in the case of VI
with alignment there is no noticeable loss barrier for MLPs and a nearly-zero loss barrier for ResNet20.

5 Experiments

Now, we present some supporting evidence to Conjecture 1. We start by training two replicas of BNNs
with variational inference (we refer to the Appendix for additional details on the experimental setup).
We then compute the marginalized barrier as B(q0, q1) = maxτ L(qτ ) − ((1 − τ)L(q0) + τL(q1))
where L(·) is the predictive likelihood and τ ∈ [0, 1], from which we take 25 evenly distributed points.
In particular, we seek to understand what happens to the VI solutions first for the naive interpolation
from q0 and q1, and then for the interpolation after aligning q0 and P#q1. We experiment with
MLPs with three layers and ResNet20 [41] with various widths on MNIST [60], Fashion-MNIST
[108] and CIFAR10 [56]. All models are trained without data augmentation [106] and with filter
response normalization (FRN) layers instead of BatchNorm. Finally, we set the prior to be Gaussian
N (0, α2I), with the flexibility of choosing the variance.

5.1 Low-barrier interpolations

Fig. 4 shows the results with and without alignment. We see that regardless of the dataset and the
model used, the performance degrades significantly when we move between the two solutions with
the naive interpolation, showing the existence of barriers in the predictive likelihood for Gaussian VI
solutions. However, with the alignment proposed in § 4 and Algorithm 1, we recover zero barrier
solutions for MLPs on both MNIST and CIFAR10, and nearly-zero barrier for ResNet20 on CIFAR10.
This holds both for the train and test splits, with quantifiably smaller barriers in the test set.

In Fig. 5 we study the effect of the width of a
neural network in relation to the loss barrier by
taking an MLP and a ResNet20 with an increas-
ing number of hidden features. We see that
wider models generally provide lower barriers:
for MLPs this holds true with and without align-
ment, while for the ResNet20 this is happening
only after alignment. This extends some previ-
ous analysis done on loss-optimized networks.
Specifically, Entezari et al. [30] show that barri-
ers seem to have a double descent trend, while
Ainsworth et al. [2] discuss that low barrier
solutions after accounting for symmetries are
easier to find in wider networks.
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Figure 5: Effect of width. After distribution alignment,
wider models exhibit lower likelihood barrier.

7

Gaussian distributions, we know that if q = N (m, S), then P#q = N (P m, P SP ⊤) and if q =
N (m, diag(s2)) then P#q = N (P m, diag(P s2)) [11]. With the KL divergence KL [P#q1 ∥ q0] it’s
easy to verify that it leads to just a distance between means, disregarding any covariance information.
While certainly this represents a valid choice, we argue that we can find a better solution by using the
Wasserstein distance. For Gaussian measures, the Wasserstein distance has analytic solution:

W2
2 (q1, q0) = ∥m0 − m1∥2

2 + Tr
(

S1 + S0 − 2
(

S
1/2
1 S0S

1/2
1

)1/2
)

=

= ∥m0 − m1∥2
2 + ∥S0 − S1∥2

F , (16)

where ∥·∥F denotes the Frobenius norm, ∥A∥ =
∑

ij aij
2, and where the second line is valid only if

the covariances commute (S1S0 = S0S1). In our case, then, we can simplify as follows:

W2
2 (P#q1, q0) = ∥m0 − P m1∥2

2 + ∥s0 − P s1∥2
2 . (17)

To summarize, the problem now can be written as:

arg min
P ∈S(d)

∥m0 − P m1∥2
2 + ∥s0 − P s1∥2

2 = arg max
P ∈S(d)

〈
P

∣∣m0m⊤
1 + s0s⊤

1
〉

F
, (18)

where the expression ⟨A|B⟩F is the Frobenius inner product, ⟨A|B⟩F =
∑

ij AijBij . Note that the
r.h.s. of Eq. (18) is a valid instantiation of the linear assignment problem (LAP) [10], which can be
solved in polynomial time.

4.2 From vectors to neural network parameters

Finally, we need to take into account that we have multiple layers and weight matrices, and that we
are trying to find functionally equivalent solutions. For this, we decide to explicitly change our main
objective by enforcing the functional equivalence constraint as follows:

arg min
{Pi}

W2
2

(
P1#q

(1)
1 , q

(1)
0

)
+ W2

2

((
P2 ◦ P ⊤

1
)

# q
(2)
1 , q

(2)
0

)
+ · · · + W2

2

((
P ⊤

L−1
)

# q
(L)
1 , q

(L)
0

)
,

where the notation
(
Pl ◦ P ⊤

l−1
)

represents the composition of the two permutation maps applied to
rows and columns of the random weight matrices. More conveniently, this can be rewritten in terms
of means and standard deviations. To leave the notation uncluttered, let’s collect the means and the
standard deviations for the layer l in M (l) and S(l), which are now both Dl × Dl−1 matrices, so that
q(l) =

∏
ij N (M (l)

ij , S
(l)
ij ). Now we can write,

arg max
{P i}L

i=1

〈
M

(1)
0

∣∣∣P 1M
(1)
1

〉
F

+
〈

S
(1)
0

∣∣∣P 1S
(1)
1

〉
F

+
〈

M
(2)
0

∣∣∣P 2M
(2)
1 P ⊤

1

〉
F

+
〈

S
(2)
0

∣∣∣P 2S
(2)
1 P ⊤

1

〉
F

+

+ · · · +
〈

M
(L)
0

∣∣∣M (L)
1 P ⊤

L−1

〉
F

+
〈

S
(L)
0

∣∣∣S(L)
1 P ⊤

L−1

〉
F

.

This optimiza matrices to be applied concurrently to rows and columns of both means and standard
deviations. This class of problems, also known as sum of bilinear assignment problems (SOLAP),
is NP-hard and no polynomial-time solutions exist. For this reason, we propose to use the setup in
Ainsworth et al. [2] by extending it to our problem. In particular, by fixing all matrices with the
exception of P l, we observe that also in our case the problem can be reduced to a classic LAP.

arg max
P l

〈
M

(l)
0

∣∣∣P lM
(l)
1 P ⊤

l−1

〉
F

+
〈

M
(l+1)
0

∣∣∣P (l+1)M
(l+1)
1 P ⊤

l

〉
F

+〈
S

(l)
0

∣∣∣P lS
(l)
1 P ⊤

l−1

〉
F

+
〈

S
(l+1)
0

∣∣∣P (l+1)S
(l+1)
1 P ⊤

l

〉
F

=

= arg max
P l

〈
P l

∣∣∣M (l)
0 P l−1

(
M

(l)
1

)⊤
+

(
M

(l+1)
0

)⊤
P l+1M

(l+1)
1 +

S
(l)
0 P l−1

(
S

(l)
1

)⊤
+

(
S

(l+1)
0

)⊤
P l+1S

(l+1)
1

〉
F

. (19)

As discussed in [2], going through each layer, and greedily selecting its best P l, leads to a coordinate
descent algorithm which guarantees to end in finite time. We present a pseudo-code in Algorithm 1.

6

This definition is a more general than the ones in [2, 30, 32] but we can recover [30] by assuming
delta posteriors qi = δ(θ − θi) and we can further recover [2, 32] by also assuming L(q0) = L(q1).

A comment on mixtures. In previous para-
graphs, we argued that the mixture of distributions
is not sufficient to capture the underlying complex
geometry of the posterior. Now, we want to better
illustrate this choice with a simple example. In
Fig. 3 we plot the test likelihood with two inter-
polation strategies between two solutions (MLP
on CIFAR10): the Wasserstein geodesics and the
mixture. With mixtures, we see that the likelihood
is pretty much constant during the interpolation,
but this is very miss-leading: we don’t see barriers
not because they don’t exist, but because the mix-
ture simply re-weights the distributions, without
continuously transporting mass in the parameter
space.
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Figure 3: Wasserstein geodesics and mixtures.
Test likelihood for mixture and the Wasserstein
geodesics interpolation. Solutions are MLPs
trained on CIFAR10.

4 Aligning distributions by looking for permutation symmetries

In this section, we formalize the algorithm that aligns the solutions of Bayesian inference through
permutation symmetries of weight matrices and biases. Let S(d) be the set of valid d × d permutation
matrices. Given a generic distribution q(θ), we can apply a permutation matrix P ∈ S(Dl) to a
hidden layer output at layer l, and if we define θ′ to be equivalent to θ with the exception of

W ′
l = P W l, b′

l = P bl, W ′
l+1 = W l+1P ⊤ , (11)

then P#q is the equivalent push-forward distribution for θ′, where P is the associated permutation
map. Let us define the distribution over the functional output of the model as

q(f(θ, ·)) =
∫

δ
(

f(θ, ·) − f(θ̂, ·)
)

dq(θ̂) , (12)

and, equivalently, the distribution on the function using the permuted parameters as

q(f(θ′, ·)) =
∫

δ
(

f(θ′, ·) − f(θ̂
′
, ·)

)
dP#q(θ̂

′
) , (13)

where in both cases δ(·) is the Dirac function. Then, it is simple to verify that the two models are
functionally equivalent for any inputs,

q(f(θ, ·)) = q(f(θ′, ·)) . (14)

This implies that for any weight-space distribution q, there exists a class of functionally equivalent
solutions P#q, in the sense of Eq. (14). These same considerations can be easily extended to other
layers, by considering multiple permutation matrices P l. For our analysis, given two solutions q0 and
q1 we are interested in finding the permuted distribution P#q1, functionally equivalent to q1, in such
a way that once interpolating using Eq. (6) we observe similar performance to q0 and q1. Formally,
we can write

arg min
P

D(q1(f(θ′, ·)), q0(f(θ, ·))) = arg min
P

D(P#q1(θ), q0(θ)) , (15)

where D is a generic measure of discrepancy.2

4.1 Problem setup for permutation of vectors

We start from a single vector of parameters, disregarding for the moment the functional equivalence
constraint. We will extend these results to matrices and multiple layers later. In practice considering

2To be formally correct, the l.h.s. is a discrepancy defined on stochastic processes while the r.h.s. is defined
on random vectors. Under mild assumptions on the distribution on the parameters and the architectures, D is
well defined in both cases [see e.g., 81].
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likelihood, a proper scoring method for probabilistic models [83], defined as

log p(y⋆ | x⋆) = log
∫

p(y⋆ | θ, x⋆)p(θ | Y , X)dθ ≈ log
∫

p(y⋆ | θ, x⋆)dq(θ) (4)

where q(θ) is an approximation of the true posterior (parametric or otherwise), {x⋆, y⋆} are re-
spectively the input and its corresponding label a data point under evaluation. To keep the notation
uncluttered for the remaining of the paper, we write the predictive likelihood computed for a set of
points {x⋆

i , y⋆
i }N

i=1 as a functional L : P(Rd) → R, defined as

L(q) def=
N∑

i=1
log

∫
p(y⋆

i | θ, x⋆
i )dq(θ) (5)

Let’s assume two models trained with VI with two different initializations, random seeds, and batch
ordering. Variational inference in the classic inverse sense KL [q ∥ p] is mode seeking, thus we expect
the two runs to converge to different solutions, say q0 and q1. To test the loss barrier as we interpolate
between the two solutions we need to decide on the interpolation rule. We decide to interpolate
the solutions following the Wasserstein geodesics between q0 and q1. First, let’s start with a few
definitions. Let q ∈ P(Rd) be a probability measure on Rd and T : Rd → Rd a measurable map;
we denote T#q the push-forward measure of q through T . Now we can introduce the Wasserstein
geodesics, as follows.
Definition 1. The Wasserstein geodesics between q0 and q1 is defined as the path

qτ =
(
(1 − τ)Id + τT q1

q0

)
# q0, τ ∈ [0, 1] (6)

where Id is the identity map and T q1
q0

is the optimal transport map between q0 and q1, which for
Brenier’s theorem [16], is unique.

While we could interpolate using a mixture of the two solutions, we argue that this choice is trivial
and does not fully give us a picture of the underlying loss landscape. Indeed, Eq. (6) is fundamentally
different from a naive mixture path q̃τ = (1 − τ)q0 + τq1. In case of Gaussian distributions, when
q0 = N (m0, S0) and q1 = N (m1, S1), qτ is Gaussian as well [100] with mean and covariance
computed as follows:

mτ = (1 − τ)m1 + τm2

Sτ = S
−1/2
1

(
(1 − τ)S1 + τ

(
S

1/2
1 S2S

1/2
1

)1/2
)2

S
−1/2
1 (7)

which simplifies even further when the covariances are diagonal.

Now, we can define convexity along Wasserstein geodesics [4] as follows.
Definition 2. Let L : P(Rd) → R, L is λ geodesics convex with λ > 0 if for any q0, q1 ∈ P(Rd) it
holds that

L(qτ ) ≤ (1 − τ)L(q0) + τL(q1) − λτ(1 − τ)
2 W2

2 (q0, q1) (8)

where W2
2 (q0, q1) is the Wasserstein distance defined as [104, 51, 52]

W2
2 (q1, q0) = inf

γ∈Π(q1,q0)

∫
∥θ1 − θ0∥2

2dγ(θ1, θ0) (9)

with Π(·, ·) being the space of measure with q0 and q1 as marginals.

While mathematically proving the geodesics convexity of the predictive likelihood for arbitrary
architectures and densities is currently beyond the scope of this work, we can empirically define a
proxy using the functional loss barrier, defined as follows.
Definition 3. The functional loss barrier along the Wasserstein geodesics from q0 and q1 is defined
as the highest difference between the marginal loss computed when interpolating two solutions q0
and q1 and the linear interpolation of the loss at q0 and q1:

B(q0, q1) = max
τ

L(qτ ) − ((1 − τ)L(q0) + τL(q1)) (10)

where qτ follows the definition in Eq. (6).

4

Contributions. With this work, we aim at studying the
linear connectivity properties of approximate solutions to
the Bayesian inference problem and we make several con-
tributions. (i) We extend the formalism of loss barrier and
solution interpolation to BNNs. (ii) For the variational in-
ference setting, propose a matching algorithm to search for
linearly connected solutions by aligning the distributions of
two independent solutions with respect to permutation matri-
ces. Inspired by [2], we frame the problem as a combinatorial
optimization problem using approximation to the linear sum
assignment problem. (iii) We then experiment on a variety
of architectures and datasets, finding nearly zero-loss bar-
riers for linearly connected solutions. In Fig. 2 we present
a sneak-peek and a visualization of our findings, where we
show that after weight distribution alignment we can find
a permutation map P of the solution q1 such that it can be
linearly connected through high density regions to q0.

P#q1 q0

q1

Log-posterior for CIFAR10

Figure 2: Permutations in multi-modal
posterior. Log-posterior for MLP/CI-
FAR10, showing the two solutions (q0 and
q1) for which we can find a permutation
map such that P#q1 can be linearly con-
nected to q0 with low barrier (brighter re-
gions).

2 Preliminaries on Bayesian deep learning

In this section, we review some basic notations on BNNs and we review stochastic variational
inference (SVI), which is the main approximation method that we analyze in this paper. Let’s consider
a generic multilayer perceptron (MLP) with L layers, where the output of the l-th layer f l(θl, x) is a
vector-valued function of the previous layer output f l−1 as follows,

f l(θl, x) = W la(f l−1(θl−1, x)) + bl (1)
where a(·) is a non-linearity, W l is a Dl × Dl−1 weight matrix and bl the corresponding bias vector.
We shall refer to the parameters of the layer l as θl = {bl, W l}, and the union of all trainable
parameters as θ = {θl}L

l=1.

The objective of using Bayesian inference on deep neural networks [67, 65] involves inferring a
posterior distribution over the parameters of the neural network given the available dataset {X, Y } =
{(xi, yi)}N

i=1. This requires choosing a likelihood and a prior [73, 74, 103]:

p(θ | Y , X) = Z−1p(Y | θ, X)p(θ) (2)
where the normalization constant Z is the marginal likelihood p(Y | X). As usually done, we assume
that the likelihood factorizes over observations, i.e. p(Y | θ, X) =

∏N
i=1 p(yi | θ, xi).

Bayesian deep learning is intractable due to the non-conjugacy likelihood-prior and thus we don’t
have access to closed form solutions. Variational inference (VI) is a common technique to handle
intractable Bayesian neural networks [12, 43, 39, 50]. Let P(Rd) be the space of probability measures
on Rd; VI reframes the inference problem into an optimization one, commonly by introducing a
parameterized distribution q(θ) ∈ P(Rd) which is optimized to minimize the Kullback-Leibler (KL)
divergence with respect to the true posterior p(θ | Y , X). In practice, this involves the maximization
of the evidence lower bound (ELBO) defined as

LELBO(q) def=
∫

log p(Y | θ, X)dq(θ) − KL [q(θ) ∥ p(θ)] (3)

whose gradients can be unbiasedly estimated with mini-batches of data [43] and the reparameterization
trick [54, 55]. Despite its simple formulation, the optimization of the ELBO hides several challenges,
like the initialization of the variational parameters [87], the effects of over-parameterization on the
quality of the approximation [88, 44, 58]. Here we are interested in how different solutions to Eq. (3)
relate to each other in terms of loss barrier, which we will define formally in the following section.

3 Loss barriers

In the context of Bayesian inference, we are interested in the loss computed by marginalization of the
model parameters with respect to (an approximation of) the posterior. As such, we use the predictive
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Figure 1: Permutation symmetries for regression on the Snelson dataset [95]. (Left) Two different solutions,
with similar function-space behavior (showing µ± 2σ). (Right) Functions obtained when using two different
strategies to interpolate between solutions. When we align the solutions, by taking into account the permutation
symmetries, we retain the capability to model the data, indicating that there are solutions that once linearly
interpolated exhibit no loss in performance. Note that, in weight space, the solution found with alignment is
neither equal to solution 1 nor 2 (see the black curve which is a single function sample with fixed randomness).

Additionally, [2] gathers compelling empirical evidence across several network architectures and
tasks, that under such a permutation symmetry the loss landscape often contains a single, nearly
convex basin.

In this work, we are taking a different perspective on this analysis. We are interested in the Bayesian
treatment of neural networks, which results in a natural form of regularization and allows to reason
about uncertainty in the predictions [101, 73, 66]. Bayesian inference for deep neural networks
is notoriously challenging, as we wish to marginalize over multi-modal distributions with high
dimensionality [47]. For this reason, there are various ways to approximate the posterior, involving
techniques like variational inference [39, 14, 35, 62, 77], Markov chain Monte Carlo (MCMC)
methods [75, 72, 27], possibly with stochastic gradients [19, 112, 33, 105, 70] and the Laplace
approximation [68, 68, 84]. Indeed, fundamentally the Bayesian posterior and the loss landscapes are
tightly interconnected: (i) solutions to the loss minimization problem are equivalent to maximum-
a-posteriori (MAP) solutions, (ii) the loss landscape is equivalent to the un-normalized negative
log-posterior. While in theory, given a dataset, the posterior is unique and the solution is global,
many approximations will only explore local properties of the true posterior1. It’s worth noting
that a posterior over the parameters of the neural network induces a posterior on the functions
generated by the model. Permutation symmetries play an important role in the geometry of the
weight-space posterior, which are generally not reflected in function-space. While it is possible to
carry out inference directly in function space, this poses a number of challenges [99, 71, 89, 61].
Fig. 1 illustrates this situation for a regression task on the Snelson dataset using a 3-layer DNN:
on the left we compare two (approximate) solutions which have different weight-space posterior
but similar function-space behavior. Notably, when we interpolate these two solutions (Fig. 1 on
the right), we completely lose all capability of modeling the data. However, when we account for
permutation symmetries in the posterior, we end up with solutions that once interpolated are still good
approximations. This suggests that for any weight-space distribution, there exists a class of solutions
which are functionally equivalent and linearly connected. This example motivates an informal generic
conjecture:

Solutions of approximate Bayesian inference for neural networks are linearly connected after ac-
counting for functionally equivalent permutations.

While being similar to the one in [30, 2], if this conjecture was to hold true for approximate Bayesian
neural networks (BNNs) it would represent an important step in further characterizing the properties
of the Bayesian posterior and the effect of various approximations. We purposely leave the previous
conjecture broadly open regarding the choice of the approximation method to allow for a more
general discussion. More specifically, in this paper we will analyze and focus our discussion on the
variational inference framework, making a more specific conjecture:
Conjecture 1. Variational inference solutions for approximate Bayesian inference in neural networks
are linearly connected after accounting for functionally equivalent permutations.

1By local properties, we mean that despite theoretical convergence guarantees of many methods like
variational inference and MCMC, in practice the true posterior for deep neural networks is still highly elusive; see
for instance the empirical convergence analysis of Hamiltonian Monte Carlo (HMC) in [47].
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Abstract

The elusive nature of gradient-based optimization in neural networks is tied to their
loss landscape geometry, which is poorly understood. However recent work has
brought solid evidence that there is essentially no loss barrier between the local so-
lutions of gradient descent, once accounting for weight-permutations that leave the
network’s computation unchanged. This raises questions for approximate inference
in Bayesian neural networks (BNNs), where we are interested in marginalizing over
multiple points in the loss landscape. In this work, we first extend the formalism
of marginalized loss barrier and solution interpolation to BNNs, before proposing
a matching algorithm to search for linearly connected solutions. This is achieved
by aligning the distributions of two independent approximate Bayesian solutions
with respect to permutation matrices. We build on the results of Ainsworth et
al. (2023), reframing the problem as a combinatorial optimization one, using an
approximation to the sum of bilinear assignment problem. We then experiment
on a variety of architectures and datasets, finding nearly zero marginalized loss
barriers for linearly connected solutions.

1 Introduction

Throughout the last decade, deep neural networks (DNNs) have achieved significant success in a wide
range of practical applications, becoming the fundamental ingredient for e.g., computer vision [e.g.,
57, 25, 41, 64], language models [e.g., 24, 82, 17] and generative models [e.g., 54, 96, 97, 98, 102, 34].
Despite recent important advancements, understanding the loss landscape of DNNs is still challenging.
The characterization of its highly non-convex nature, its relation with architectural choices like depth
and width and the connection with optimization and generalization are just some of the problems
which have been the focus of extensive research in the last few years [e.g., 76, 26, 36, 32, 2, 30, 38, 79].
It is well known, for example, that one of the fundamental characteristics of deep neural networks is
their ability to learn hierarchical features, and in this regards deeper networks seem to be exponentially
more expressive than shallower models [e.g., 3, 5, 7, 8, 18, 109], leading the loss landscape to have
many optima due to symmetries and over-parameterization [76, 26, 111, 94]. At the same time,
the role of the depth of a model in relation with its width is far less understood [80], despite wide
neural networks exhibiting important theoretical properties in their infinite limit behavior [e.g.,
73, 23, 29, 53, 48, 37, 20].

Two notions that have been useful to shed light on the geometry of loss landscapes are that of loss
barriers and mode connectivity [36, 26]. The mode connectivity hypothesis states that given two points
in the landscape, there exists a path connecting them such that the loss is constant or near constant (or,
said differently, the loss barrier is null). We refer to linear mode connectivity when the path connecting
the two solutions is linear [32]. Recently, evidence has surfaced that stochastic gradient descent
(SGD) solutions to the loss minimization problem can be linearly connected. Indeed, Entezari et al.
[30] discuss the role of permutation symmetries from a loss connectivity viewpoint, conjecturing the
possibility that mode connectivity is actually linear once accounting for all permutation invariances.
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