
End-to-End Meta-Bayesian Optimisation with
Transformer Neural Processes

Alexandre Maraval∗1 Matthieu Zimmer∗1

Antoine Grosnit1,2 Haitham Bou-Ammar1,3

Huawei Noah’s Ark Lab1

Technische Universität Darmstadt2
University College London3

November 2023

A. Maraval, M. Zimmer, A. Grosnit, H. Bou-Ammar End-to-End Meta-BO w/ Transformer Neural Processes November 2023 1 / 27



Background

Table of Contents

1 Background

2 Method

3 Experiments

4 Conclusion

5 References

A. Maraval, M. Zimmer, A. Grosnit, H. Bou-Ammar End-to-End Meta-BO w/ Transformer Neural Processes November 2023 2 / 27



Background

Background I - Bayesian Optimisation

In Bayesian Optimisation (BO), the objective is to optimise a black-box
function f : X → R that is expensive to evaluate (time, cost, . . . )

x∗ = argmax
x∈X

f (x) (1)

We do not have access to gradients so We build a cheap proxy of the
objective function with a probabilistic model, typically a Gaussian Process
(GP) that we use to model f . We explore the space X with an acquisition
function α : X → R that evaluates the probability of regions in X of solving
(1), using the GP model. The ability of the GP to give uncertainty estimates
allows us to trade off exploration and exploitation during optimisation
resulting in a very sample-efficient optimisation method.
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Background

Background II - Meta-Bayesian Optimisation

BO works tabula-rasa which means that each time we have a new function
to optimise, we do it from scratch, fitting the surrogate model and using the
acquisition to collect points online.
Meta-BO is the setting in which we have access to previous source tasks
that are similar to the test tasks that we want to solve with BO.
Existing meta-learning paradigms that exploit the source data include
methods that meta-learn

a model with Supervised Loss [FSBO1,RGPE2]
a model with RL (end-to-end GP+EI) [DKAF3]
an acquisition function with RL [MetaBO4]

None of them learn both end-to-end with RL!
1Wistuba and Grabocka [2021]
2Feurer et al. [2018]
3Iwata [2021]
4Volpp et al. [2020]
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Background

Background III - Neural Process

Neural Processes (NPs)5 combine flexibility and model capacity from Neural
Networks with the uncertainty prediction capabilities of Probabilistic models
such as GPs.
NPs are meta-models: conditioned on some context data
C = {(x (c), y (c))}Cc=1 as well as target inputs xT = {x (t)}Tt=1, they predict
in a single forward pass a (Gaussian) distribution of the target outputs
yT = {y (t)}Tt=1

pθ(yT |C, xT ) = N (µ̂T , σ̂
2
T )

where the NP model is a neural network parameterised by θ that outputs a
mean and variance associated to each test input.
We will make use of such models in the context of Meta-BO!

5Garnelo et al. [2018]
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Method

Method I - Learning Acquisition Functions with RL

We directly learn to predict acquisition function values, for which there are
no true labels. We need to use RL!
Formally we have the following MDP

State:st = [Ht , t,T ]

Action:at = xt (choice of next probe)
Reward:rt = max

1≤ℓ≤t
yℓ (simple regret)

where Ht = {(x1, y1), . . . , (xt−1, yt−1)} is the history of collected point so
far up to step t − 1.
The transition function is simply adding the new point and its corresponding
function value to the history

Ht+1 = Ht ∪ {(xt , yt)}.
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Method

Method II - Learning Acquisition Functions with RL

We assume we have collected data from multiple source tasks so we extend
to multi-task RL. We introduce a set of MDPsM1, . . . ,MK where all have
the same state and action spaces. Formally we have the following MDP

States:s(k)t = [H(k)
t , t(k),T (k)

Actions:a(k)t = x (k)
t

Rewards:r (k)t = max
1≤ℓ≤t(k)

y
(k)
ℓ ,∀k.

We now seek a policy πθ which performs well on average on all K source
tasks

argmax
πθ

J(πθ) = argmax
πθ

Ek

EH(k)
T

T (k)∑
t=1

γt−1r
(k)
t

 . (2)
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Method

Method III - Auxiliary Task

In a complete black-box setting, the reward definition as simple regret is the
best we can do, but it gives only sparse information.
For rt to contribute to the cumulative reward, yt must be larger than all
previous values observed.
We can quantify the average number of such informative events and find
that it is of order O(logT ).
To improve training of the policy πθ we introduce an auxiliary task.
For each source task k with collected dataset D(k) = D(k)

obs ⊔ D
(k)
pred, we

define the auxiliary loss to be the log-likelihood of the predicted subset,
conditioned on the observed subset

L(θ) = E
k,D(k)

obs,D
(k)
pred

[
log p

(
y
(pred)
k |x (pred)

k ,D(k)
obs

)]
. (3)
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Method

Method IV - Neural Acquisition Processes

The architecture used for our policy is a transformer-based Neural Process
that predicts acquisition function values directly.
Similarly to NPs it takes as inputs a context H and query locations. It is
parameterised by θ and we denote its outputs by αθ(x (pred),H, t,T )

πθ

(
x (pred)
t |Ht , t,T

)
∝ eαθ(x

(pred)
t ,Ht ,t,T )∑npred

i eαθ(x
(pred)
i ,Ht ,t,T )

. (4)

The full objective is therefore the sum of both the RL loss (2) and
Supervised auxiliary one (3)

J (θ) = J(θ) + λL(θ)

where λ is a hyperparameter.
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Method

Pipeline

Algorithm Neural Acquisition Process training.

Require: Source tasks training data {D(k)}Kk=1, initial parameters θ, budgets
T (k) ≡ T , discount factor γ, learning rate η
for each epoch do

select task k and dataset D(k), set H0 = {∅}
for t = 1, . . . ,T do

xt ∼ πθ(·|st), yt = f (k)(xt) ▷ predict & execute action
rt = y∗≤t ▷ collect reward
Ht+1 ← Ht ∪ {(xt , yt)} ▷ update hist.

end for
R =

∑T
t=1 γ

trt ▷ cumul. reward
D → Dobs ⊔ Dpred ▷ split source data
L = pθ(y (pred)|x (pred),Dobs) ▷ aux. loss
θ ← θ + η( ∇θR + ∇θL ) ▷ update θ

end for
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Method

Architecture I

Policy πθ
State st

Ht

T , t

pθ(·)
αθ(·) xt

Action

Rt =
∑t

i=1 γ
i ri

Reward

∇θR

Lt = pθ(y |x ,Ht)

Auxiliary loss

∇θL

Ht+1 := Ht ∪ {(xt , yt)}

Figure: Summary of our proposed Neural Acquisition Process (NAP) architecture.
The action is sampled from the policy xt ∼ πθ(·|st). For a set of locations x ⊆ A,
the gradients flow back to parameters θ from both the cumulative regret returns
Rt and the auxiliary likelihood loss Lt .
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Method

Architecture II - Inputs and attention
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Figure: Our proposed NAP architecture (left) and an example of the masks applied
during inference (right). We apply independent embedding on xi , yi , t and T . The
colored squares mean that the tokens on the left can attend the tokens on the top
in the self-attention layer.
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Method

Architecture III - Comparison to other models

Table: We compare the properties of different transformer architectures. L is the
number of tokens needed to encode the meta-data, and D denotes the
dimensionality of X .

NAP (ours) TNP1 OptFormer2 PFN3

History-order inv. ✔ ✔ ✘ ✔

Query ind. ✔ ✘ ✘ ✔

AF values ✔ ✘ ✘ ✘

Tokens t + npred t + npred
L+ (D + 2)×
(t + npred)

t + npred

1Nguyen and Grover [2022]
2[Chen et al., 2022]
3[Müller et al., 2022]
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Method

Architecture IV - Properties

History-order invariance
An NP g is history-order invariant if for any choice of permutation function
ψ that changes the order of the points in history, g(x , ψ(H)) = g(x ,H).

We do not use a positional encoding. NAP treats the history H as a set
instead of an ordered sequence. in BO, the order in which we collect points
is not relevant for making predictions.

Query independence
A NP g is query independent if for any choice of n queried locations
x (pred) = x (pred)

1 , . . . , x (pred)
n , we have

g(x (pred),H) = g(x (pred)
1 ,H), . . . , g(x (pred)

n ,H).

Tokens in x (pred) can access all tokens in H but cannot access each other
through the self-attention mask. Predicting AF values for BO should not
depend on the other queried locations.
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Experiments

Experiments I - Hyperparameter Optimisation

Hyperparameter Optimisation Benchmark

We use a subset of tasks from HPO-B [Pineda-Arango et al., 2021], a
standard benchmark. We select a representative set of 6 search spaces and
the ones with lowest amount of data to showcase the low data regime
performance of NAP.

Tuning MIP Solvers
We tune the hyperparameters of SCIP, a solver for Mixed Integer Programs
(MIP). The hyperparameters consist of 135 mixed-type variables. We collect
data on 103 source tasks and test on 42 other tasks.
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Experiments

Experiments II - Sequence Optimisation

Antibody CDRH3-Sequence Optimisation

CDRH3 is a part of the amino-acid (AA) sequence representing a protein,
decisive in its binding properties. It is a sequence of 11 AA out of an
alphabet of cardinality 22. The goal is to optimise the CDRH3 to minimise
the binding energy of a given antibody protein with a specific antigen. We
collect datasets of CDRH3s and their respective binding energies (with
Absolut!) across various antigens, 109 to train and 16 to test.

Electronic Design Automation (EDA)

Logic Synthesis (LS) is an essential step in the EDA pipeline of chip design
process. A sequence of logic synthesis operators is used to optimise the
And-Inverted Graph (AIG) that represents a circuit. Finding the sequence
that optimises circuit area and delay is of major interest. We consider LS
sequences of length 20 from an alphabet of 11 operators. We collected
datasets from 30 different circuits and test on 9 new ones.
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Experiments

Experiments III - Results

Figure: Average regret vs. BO iterations with 5 initial points. (Left) Results on 6
search spaces on the HPO-B benchmark. (Middle-left) Results tuning SCIP for
solving 42 different MIPs. (Middleright) Antibody CDR3 sequence optimisation on
32 test datasets corresponding to 32 different antigens. (Right) Logic synthesis
operator sequence optimisation on 9 test datasets corresponding to 9 different
circuits. For each method, error bars show confidence intervals computed across 5
runs on HPO-B and 10 runs on all the others.

A. Maraval, M. Zimmer, A. Grosnit, H. Bou-Ammar End-to-End Meta-BO w/ Transformer Neural Processes November 2023 19 / 27



Experiments

Ablation Study I

Table: Variations of NAP and their components.

pθ αθ RL Supervision End-to-end
NAP (ours) ✔ ✔ ✔ ✔ ✔

Pre-NAP ✔ ✔ ✔ ✔ ✘

NAP-RL ✔ ✔ ✔ ✘ ✔

NP-EI ✔ ✘ ✘ ✔ ✘
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Experiments

Ablation Study II
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Figure: Average regret vs iterations on HPOBench dataset for XGBoost. Error bars
are confidence intervals across ten runs.
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Conclusion

Conclusion

NAP is the first method that can be meta-trained end-to-end to predict
acquisition functions.
It’s applicable to a wide range of domains and gets good results on various
tasks, provided little meta-training data.
It is able to outperform other metaBO baselines such as FSBO [Wistuba and
Grabocka, 2021] and even bigger models such as Optformer [Chen et al.,
2022].

Limitations & Future Work
NAP architecture suffers from the usual quadratic complexity of the
transformer in the number of tokens. It can still handle around 5000 steps,
which is enough for most BO scenarios.
Another limitation is that we need to train a new model for each search
space. In future, we plan to enable our method to leverage meta-training
from multiple search spaces.
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