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Motivation
T Lo

X: training data
y: label

) S T. states of student

0 Sg: student model

L™: dynamic loss function

\/ T, teacher model

Two problems in existing works:
1) neglecting the temporal nature of loss function adjustment;

2) neglecting the states of loss functions.
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Motivation memory
unit

Vb T

X: training data
y: label

Vd: gradient concerning dynamic loss
Sq: student model

L - dynamic loss network
T, teacher model

1) adopting an LSTM teacher to accumulate the experience during teaching a student;

2) employing the state of DLN to update the parameter of DLN.
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Advantages

Our L2T-DLN bring two benefits:

1) capturing and maintaining short- and long-term dependencies during teaching process;

2) the gradient concerning DLN achieves holistic information integration throughout the
learning process, facilitated by prior knowledge (chain rule).



-Q® .\...é;.\."l
2. NEURAL INFORMATION
‘:? PROCESSING SYSTEMS

Method

Student , @ , | A (MHION
learning Y gN 92N \

L L Ly
DLN ) ' g \ Y g : "
learning  ¢° 0 b o ¢
Vel g° Vo'
_»K O h 4 1 )
hO - T(p J h - T(P J
Teacher @ o
learning  ¢° 0’ 0



SINE
NEURAL INFORMATION
PROCESSING SYSTEMS

#-y
Convergence Analysis

Conclusion 1: Let H £ V<e(x) denote the Hessian matrix at e-second-order stationary
solution v* where A4,,,;,,(H) < —y and y > 0. We have
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Results
Comparison with SOTA loss functions in classification task.
Method | CIFAR-10 - CIFAR-100 ImageNet length
ResNets ResNet20)  ResNet32 WRN ResNets ResNet20  ResNet32 NASNet-A
CE 87.6 91.3 02.5 06.2 60.2 67.7 69.6 73.5 -
Smooth |4 ] 87.9 91.5 02.6 06.2 60.5 68.0 69.9 - -
L-M Softmax [6] 88.7 92.0 03.0 96.3 61.1 68.1 70.1 - -
L2T-DLF HO] 89.2 92.41 03.1 06.6 61.7 69.0 70.8 - I
ARLF [H] 89.5 91.5 92.2 05.9 60.2 67.8 69.9 - -
SLF [5] 89.8 93.0 03.6 97.1 62.7 69.9 71.5 - -
ALA |3] - : 93.2 96.7 62.2 69.5 70.9 74.6 200
Ours 90.7 £0.06 93.4 £ 0.18 93.8 +0.20 96.7 £ 0.09 63.5 - 0.07 70.4 £ 0.03 72.0 £ 0.11 71.2 25

Comparison with SOTA method in noisy-label classification task.

Method CIFAR-10 CIFAR-100
n=20% n=40% p=20% n=40%
Baseline 76.83 70.77 50.86 43.01
MentorNet [4 36.36 31.76 61.97 52.66
Meta-Weight-Net [9] 90.33 87.54 64.22 58.64
L2R [2] 91.05 38.71 66.08 60.51
Ours 92.114+0.27 89.39+ 1.20  70.05+ 0.23  61.27+ 0.51
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Results
Comparison with YOLO-v3 loss in objective Comparison with PSPNet loss in semantic
detection. segmentation.
Detectors Size mAP FPS Method mloU
YOLOV3 [§] 416  55.3 35 PSPNet |- 82.6
YOLOV3-ours 416 56.9 35 PSPNet-ours  82.9



More detalls
Visualization of DLN during MNIST learning
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More detalls

Visualization of gradient of the student in noisy-label classification
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