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o We derive the first PAC-Bayes bound for conditional posterior
distributions.

@ We use this result to derive statistical guarantees for VAEs.

@ Our results include the reconstruction, regeneration, and generation
guarantees for the standard VAE.
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PAC-Bayesian Theory

o PAC-Bayes is powerful tool in statistical learning theory.
o PAC-Bayes has been applied to a multitude of problems.

@ Our first result is a novel PAC-Bayes bound with a conditional
posterior distribution.

Mbacke, Clerc and Germain Statistical Guarantees for VAEs NeurlPS 2023 Spotlight 3/23



Next up

@ General PAC-Bayes Bound with a Conditional Posterior
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The General theorem: Definitions

e (X,d) is a metric space;
TS Mﬂr(é\,’) is the data-generating distribution;
© S={x1,...,X} " i is a set of observed samples;
@ H is the hypothesis class;
p(h) € ML (H) is the prior distribution on H;

e A>0andd € (0,1);
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General PAC-Bayes Bound with a Conditional Posterior

@ The goal is to obtain a PAC-Bayes bound for conditional posterior
distributions g(h|x), conditioned on elements of the instance space.

@ The main goal for this bound is the analysis of VAEs, since the
variational posterior g, (z|x;) is conditional.

@ This result requires the following assumption.
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Assumption 1

Assumption

We say that a distribution g(h|x) and a loss function ¢ satisfy Assumption
1 with a constant K > 0 if there exists a family £ of functions H — R
such that the following properties hold.

@ The function x — g(:|x) is continuous in the following sense: for any
X1,X2 € X,

de (q(hlx1), q(hlx2)) < Kd(x1, x2).
@ For any x € X, the function ¢(-,x) : H — Ris in &:

/(-,x) € &, foranyxe X.
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The General PAC-Bayes Bound for Conditional Posteriors

Xn} i 1, the

With probability 1 — & over the random draw of {xi, ...,
following holds for any conditional posterior q(h|x) satisfying

Assumption 1:

(h)< > E x,)e(h,x,-) 1 3 KLl || () +
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@ Variational Autoencoders

Mbacke, Clerc and Germain Statistical Guarantees for VAEs NeurlPS 2023 Spotlight



Variational Autoencoders
Sample Encoder }» Decoder Reconstruction
i Qolzix) —> 2 # T
4 ]

o The latent space. Z = R

e The encoder. Q; : X — R29z where Qy (x) = l'% (x)] .
g (x)

o The variational posterior. g4(z|x) = N <u¢ (x) ,diag(ag5 (x)))
o The decoder. gy : Z — X.

o The reconstruction loss. /%, (z,x) = ||x — gy(2)| -

o Lipschitz norms. [|Qyll;; =Ky and  |igll;, = Ko-
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Variational Autoencoders: Optimization Objective

Given a training set S = {x1,...,X,}, the encoder and decoder networks
are jointly trained by minimizing the following objective:

Cone(6,0) = =S| B (2,x) +8KL(go(2lx) | p(2))

n—= z~as(zlxi) ~~ 4
- ~ KL loss

TV
Reconstruction loss
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Applying the General Theorem to VAEs: Assumption 1

Recall Assumption 1: There exists £ C R? such that:
Q Forany xi;,x; € X, de (q(z[x1), g(z[x2)) < Kd(x1,%2);

Q Foranyxe X, (-, x) e€.
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Applying the General Theorem to VAEs: Assumption 1

Recall Assumption 1: There exists £ C R? such that:
Q Forany xi;,x; € X, de (q(z[x1), g(z[x2)) < Kd(x1,%2);

Q Foranyxe X, l,x)eé&.

Proposition

Consider a VAE with parameters ¢ and  and let K, Ky € R be the
Lipschitz norms of the encoder and decoder respectively. Then the
variational distribution qy(z|x) satisfies Assumption 1, with

€ = Lipk,(Z,R), £ = {0, and K = K4Kj.

rec’
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© Reconstruction Guarantees
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Reconstruction Guarantees for Bounded Instance Spaces

Assuming A = sup, -y d(x,x') < oo, with probability at least 1 — 0, the
following holds:

n

SENECEER S NI ES S SO CRIO)

X1t 4, (z}) — as(zlx)

1 AA?
Iog 5 + Ko KgA + ——

)\ 8n °
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Reconstruction Guarantees Under the Manifold Assumption

Assuming 1 = g*ip*, where g* € Lipx_ and p* = N (0,1) on R®", with
probability at least 1 — 6 — %"*e_az/ 2 the following holds for any posterior

q(z|x):

n

E E f(zx) < %Z { E E?ec(z7xi)} + % ZKL(%(Z|X:') 1p(2))

X1t g (2l) — | a(zlx)

11 \/T AK?2
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@ Regeneration and Generation Guarantees
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The VAE's generative model
Decod ( )
p2) — z —{ ececel News;ample
(:] \ J

@ Once trained, the VAE defines a generative model: gyip(z).

@ Our goal is to bound the distance: Wi (u, gyip(z)).

o Considering the regenerated distribution: /i, s = %Zle goqs(z|x;),
we use the inequality:

Wi (1, goip(x)) < Wa(p, fig.0) + Walfis, 200p(x)).
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Regeneration Guarantees for Bounded Instance Spaces

With probability at least 1 — &, the following holds:

n

WG ion) < 33 B uleix) | +5 DKL otz 1(2)
i=1 i=1

| 1+)\A2
)\ gé 8n
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Generation Guarantees for Bounded Instance Spaces

With probability at least 1 — 6, the following holds:

n

Wilisatn(2) < 0S| B, Atz S Kastela) | (2

— \as(alx)

A'Og(15+7 Kezww )+ |l (x )—1H
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Regeneration Guarantees under the Manifold Assumption

With probability at least 1 — &, the following holds:

n

X 1 1<
WG ion) < 33 B uleix) | +5 DKL otz 1(2)
i=1 i=1

1 AK?
K 2n

)\
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Generation Guarantees under the Manifold Assumption

With probability at least 1 — 6, the following holds:

n g
— | ag(zlx)

Wip@) <35 { e} + 33 KLlas(zia) 1 p(2)

1. 1 MKZ2 Ky ”\/ 5 12
31085+ S+ 5 2l (4l + ||os ) = 1]

v
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© Conclusion
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Conclusion

@ We proved, to the best of our knowledge, the first statistical
guarantees for VAEs.

@ We consider the standard VAE, with no additional noise on the
parameters.

@ Our results cover the reconstruction, regeneration and generation
properties of VAEs.

@ The seamless integration of VAE and PAC-Bayes is promising.
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