
Statistical Guarantees for Variational Autoencoders
using PAC-Bayesian Theory

Sokhna Diarra Mbacke, Florence Clerc, Pascal Germain

NeurIPS 2023 Spotlight

Mbacke, Clerc and Germain Statistical Guarantees for VAEs NeurIPS 2023 Spotlight 1 / 23



Summary

We derive the first PAC-Bayes bound for conditional posterior
distributions.

We use this result to derive statistical guarantees for VAEs.

Our results include the reconstruction, regeneration, and generation
guarantees for the standard VAE.
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PAC-Bayesian Theory

PAC-Bayes is powerful tool in statistical learning theory.

PAC-Bayes has been applied to a multitude of problems.

Our first result is a novel PAC-Bayes bound with a conditional
posterior distribution.
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The General theorem: Definitions

(X , d) is a metric space;

µ ∈ M1
+(X ) is the data-generating distribution;

S = {x1, . . . , xn}
iid∼ µ is a set of observed samples;

H is the hypothesis class;

p(h) ∈ M1
+(H) is the prior distribution on H;

λ > 0 and δ ∈ (0, 1);
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General PAC-Bayes Bound with a Conditional Posterior

The goal is to obtain a PAC-Bayes bound for conditional posterior
distributions q(h|x), conditioned on elements of the instance space.

The main goal for this bound is the analysis of VAEs, since the
variational posterior qϕ(z|xi ) is conditional.

This result requires the following assumption.
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Assumption 1

Assumption

We say that a distribution q(h|x) and a loss function ℓ satisfy Assumption
1 with a constant K > 0 if there exists a family E of functions H → R
such that the following properties hold.

1 The function x 7→ q(·|x) is continuous in the following sense: for any
x1, x2 ∈ X ,

dE (q(h|x1), q(h|x2)) ≤ Kd(x1, x2).

2 For any x ∈ X , the function ℓ(·, x) : H → R is in E :

ℓ(·, x) ∈ E , for any x ∈ X .
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The General PAC-Bayes Bound for Conditional Posteriors

Theorem

With probability 1− δ over the random draw of {x1, . . . , xn}
iid∼ µ, the

following holds for any conditional posterior q(h|x) satisfying
Assumption 1:

E
x∼µ

E
h∼q(h|x)

ℓ(h, x) ≤ 1

n

n∑
i=1

E
h∼q(h|xi )

ℓ(h, xi ) +
1

λ

n∑
i=1

KL(q(h|xi ) || p(h))+

K

n

n∑
i=1

E
x∼µ

d(x, xi ) +
1

λ
log

1

δ
+

n

λ
log E

x∼µ
E

h∼p(h)
e

λ
n (Ex′∼µ[ℓ(h,x

′)]−ℓ(h,x))
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Variational Autoencoders

The latent space. Z = RdZ

The encoder. Qϕ : X → R2dZ , where Qϕ (x) =

[
µϕ (x)

σϕ (x)

]
.

The variational posterior. qϕ(z|x) = N
(
µϕ (x) , diag(σ

2
ϕ (x))

)
.

The decoder. gθ : Z → X .

The reconstruction loss. ℓθrec(z, x) = ∥x− gθ(z)∥ .

Lipschitz norms. ∥Qϕ∥Lip = Kϕ and ∥gθ∥Lip = Kθ.
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Variational Autoencoders: Optimization Objective

Given a training set S = {x1, . . . , xn}, the encoder and decoder networks
are jointly trained by minimizing the following objective:

LVAE(ϕ, θ) =
1

n

n∑
i=1

 E
z∼qϕ(z|xi )

ℓθrec(z, xi )︸ ︷︷ ︸
Reconstruction loss

+βKL(qϕ(z|xi ) || p(z))︸ ︷︷ ︸
KL loss

.
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Applying the General Theorem to VAEs: Assumption 1

Recall Assumption 1: There exists E ⊆ RZ such that:
1 For any x1, x2 ∈ X , dE (q(z|x1), q(z|x2)) ≤ Kd(x1, x2);

2 For any x ∈ X , ℓ(·, x) ∈ E .

Proposition

Consider a VAE with parameters ϕ and θ and let Kϕ,Kθ ∈ R be the
Lipschitz norms of the encoder and decoder respectively. Then the
variational distribution qϕ(z|x) satisfies Assumption 1, with
E = LipKθ

(Z,R), ℓ = ℓθrec, and K = KϕKθ.
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Reconstruction Guarantees for Bounded Instance Spaces

Theorem

Assuming ∆ = supx,x′∈X d(x, x′) < ∞, with probability at least 1− δ, the
following holds:

E
x∼µ

E
qϕ(z|x)

ℓθrec(z, x) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+ KϕKθ∆+

λ∆2

8n
.
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Reconstruction Guarantees Under the Manifold Assumption

Theorem

Assuming µ = g∗♯p∗, where g∗ ∈ LipK∗ and p∗ = N (0, I) on Rd∗
, with

probability at least 1− δ − nd∗

2 e−a2/2, the following holds for any posterior
qϕ(z|x):

E
x∼µ

E
qϕ(z|x)

ℓθrec(z, x) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+ KϕKθK∗

√
(1 + a2)d∗ +

λK 2
∗

2n
.
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The VAE’s generative model

Once trained, the VAE defines a generative model: gθ♯p(z).

Our goal is to bound the distance: W1(µ, gθ♯p(z)).

Considering the regenerated distribution: µ̂ϕ,θ =
1
n

∑n
i=1 gθ♯qϕ(z|xi ),

we use the inequality:

W1(µ, gθ♯p(x)) ≤ W1(µ, µ̂ϕ,θ) +W1(µ̂ϕ,θ, gθ♯p(x)).
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Regeneration Guarantees for Bounded Instance Spaces

Theorem

With probability at least 1− δ, the following holds:

W1(µ, µ̂ϕ,θ) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+

λ∆2

8n
.
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Generation Guarantees for Bounded Instance Spaces

Theorem

With probability at least 1− δ, the following holds:

W1(µ, gθ♯p(z)) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+

λ∆2

8n
+

Kθ

n

n∑
i=1

√
∥µϕ (xi )∥2 +

∥∥∥σϕ (xi )− 1⃗
∥∥∥2.
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Regeneration Guarantees under the Manifold Assumption

Theorem

With probability at least 1− δ, the following holds:

W1(µ, µ̂ϕ,θ) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+

λK 2
∗

2n
.
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Generation Guarantees under the Manifold Assumption

Theorem

With probability at least 1− δ, the following holds:

W1(µ, gθ♯p(z)) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi )
ℓθrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qϕ(z|xi ) || p(z))

+
1

λ
log

1

δ
+

λK 2
∗

2n
+

Kθ

n

n∑
i=1

√
∥µϕ (xi )∥2 +

∥∥∥σϕ (xi )− 1⃗
∥∥∥2.
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Conclusion

We proved, to the best of our knowledge, the first statistical
guarantees for VAEs.

We consider the standard VAE, with no additional noise on the
parameters.

Our results cover the reconstruction, regeneration and generation
properties of VAEs.

The seamless integration of VAE and PAC-Bayes is promising.
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