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Background

• Motivation: we study the finite-time convergence of single-timescale
actor-critic algorithm under the Markovian sampling scheme with infinite
state space and average reward setting.

• Challenge: how to control the highly coupled error propagation between
reward, critic, and actor in this setting?

• Idea: keep track of these errors to establish an interconnected iteration
system and solve them simultaneously.



Background

• Motivation: we study the finite-time convergence of single-timescale
actor-critic algorithm under the Markovian sampling scheme with infinite
state space and average reward setting.

• Challenge: how to control the highly coupled error propagation between
reward, critic, and actor in this setting?

• Idea: keep track of these errors to establish an interconnected iteration
system and solve them simultaneously.



Background

• Motivation: we study the finite-time convergence of single-timescale
actor-critic algorithm under the Markovian sampling scheme with infinite
state space and average reward setting.

• Challenge: how to control the highly coupled error propagation between
reward, critic, and actor in this setting?

• Idea: keep track of these errors to establish an interconnected iteration
system and solve them simultaneously.



Preliminaries

We consider the standard Markov Decision Process (MDP) characterized by
(S,A,P, r), where S is the state space and A is the action space. We consider
a finite action space |A| < ∞, whereas the state space can be either a finite set
or an (unbounded) real vector space S ⊂ Rn. P(st+1|st , at) ∈ [0, 1] denotes the
transition kernel. We consider a bounded reward r : S ×A → [−Ur ,Ur ], which
is a function of the state s and action a. A policy πθ(·|s) ∈ R|A| parameterized
by θ is defined as a mapping from a given state to a probability distribution over
actions.
The RL problem of consideration aims to find a policy πθ that maximizes the
infinite-horizon time-average reward, which is given by

J(θ) := lim
T→∞

Eθ

∑T−1
t=0 r(st , at)

T
= E

s∼µθ,a∼πθ

[r(s, a)],

where the expectation Eθ is over the Markov chain under the policy πθ, and µθ

denotes the stationary state distribution induced by πθ.



Algorithm

We analyze the following algorithm for finding optimal policy πθ.

Algorithm Single-timescale Actor-Critic

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward
estimator η0, stepsize αt for actor, βt for critic, and γt for reward estimator.

2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · ,T − 1 do
4: Take action at ∼ πθt (·|st)
5: Observe next state st+1 ∼ P(·|st , at) and reward rt = r(st , at)
6: δt = rt − ηt + ϕ(st+1)

⊤ωt − ϕ(st)
⊤ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠUω (ωt + βtδtϕ(st))
9: θt+1 = θt + αtδt∇θ log πθt (at |st)

10: end for

• Note that the “single-timescale” refers to the fact that the stepsizes
αt , βt , γt are only constantly proportional to each other.
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Assumption

Assumption 1 (Exploration)
Aθ := E(s,a,s′)[ϕ(s)(ϕ(s

′)− ϕ(s))⊤)] with s ∼ µθ(·), a ∼ πθ(·|s), s ′ ∼ P(·|s, a)
is negative definite and its maximum eigenvalue can be upper bounded by −λ.

Assumption 2 (Uniform ergodicity)
For a Markov chain generated by πθ and P, there exists m > 0 and ρ ∈ (0, 1)
such that dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ mρτ ,∀τ ≥ 0,∀s ∈ S.

Assumption 3 (Lipschitz continuity of policy)
There exist constants B, Ll , Lπ such that for any θ ∈ Rd , s ∈ S, a ∈ A, it holds
that: i)∥∇ log πθ(a|s)∥ ≤ B; ii)∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥ ≤
Ll∥θ1 − θ2∥; iii)|πθ1(a|s)− πθ2(a|s)| ≤ Lπ∥θ1 − θ2∥.

Assumption 4 (Lipschitz continuity of stationary distribution)
For any θ,θ′ ∈ Rd , there exists constant Lµ such that
∥∇µθ −∇µθ′∥ ≤ Lµ∥θ − θ′∥, where µθ(s) is the stationary distribution under
the policy πθ.
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Main Results

Theorem 5 (Markovian sampling)
Consider Algorithm 1 with αt =

c√
T
, βt = γt =

1√
T
, where c is a constant

depending on problem parameters. Suppose Assumptions 1-4 hold, we have for
T ≥ 2τT ,

1

T − τT

T−1∑
t=τT

Ey2
t = O(

log2 T√
T

) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O(
log2 T√

T
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O(
log2 T√

T
) +O(ϵapp).



Main Results

• ϵapp is the critic approximation error.

• yt := ηt − J(θt) and zt := ωt − ω∗(θt) measure the reward estimation
error and critic error, respectively.

• τT = logmρ−1

log ρ−1 + logT
2 log ρ−1 = O(logT ) represents the mixing time of an

ergodic Markov chain.

• To obtain an ϵ-approximate stationary point, it takes a number of Õ(ϵ−2)
samples for Markovian sampling and O(ϵ−2) for i.i.d. sampling, which
matches the state-of-the-art performance of SGD on non-convex
optimization problems.



Proof Sketch

• Reward Estimation Error: from the reward estimator update rule in Line 7
of Algorithm 1, we decompose the reward estimation error into:

y2
t+1 = (1− 2γt)y

2
t + 2γtyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ (J(θt)− J(θt+1) + γt(rt − ηt))
2.

(1)

• Critic Error: from the critic update rule in Line 8 of Algorithm 1, we
decompose the squared critic error into

∥zt+1∥2 =∥zt∥2 + 2βt⟨zt , ḡ(ωt ,θt)⟩+ 2βtΨ(Ot ,ωt ,θt)

+ 2βt⟨zt ,∆g(Ot , ηt ,θt)⟩+ 2⟨zt ,ω∗
t − ω∗

t+1⟩
+ ∥βt(g(Ot ,ωt ,θt) + ∆g(Ot , ηt ,θt)) + ω∗

t − ω∗
t+1∥2.

(2)

• Policy Gradient Norm (Actor Error): from the actor update rule in Line 9
of Algorithm 1, we bound the policy gradient norm by

∥∇J(θt)∥2 ≤
1

αt
(J(θt+1)− J(θt))− ⟨∇J(θt),∆h(Ot , ηt ,ωt ,θt)⟩

− ⟨∇J(θt),EO′
t
[∆h′(O ′

t ,θt)]⟩

+Θ(Ot ,θt) +
LJ′

2
αt∥δt∇ log πθt (at |st)∥2.

(3)
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Proof Sketch

Taking expectation of and summing (1),(2),and (3) from τT to T − 1, we define

YT = 1
T−τT

T−1∑
t=τT

Ey2
t , ZT = 1

T−τT

T−1∑
t=τT

E∥zt∥2, GT = 1
T−τT

T−1∑
t=τT

E∥∇J(θt)∥2.

By analysing each error term in (1),(2), and (3), we obtain the following
interconnected iteration system:

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + l2

√
YTZT + l3

√
ZT (2YT + 8ZT ),

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l4

√
GT (2YT + 8ZT ),

where l1, l2, l3, l4 are positive constants. By solving the above system of
inequalities, we further prove that if l1(1 + 2l24 +8l24 (2l

2
2 + l3)) ≤ 1 and 16l3 ≤ 1,

which can be easily satisfied by choosing the following stepsize ratio

c = min{ λ
32BL∗

, λ2

G(λ2+3B2λ2+64B2)}, then YT ,ZT ,GT converge at a rate of

O( log
2 T√
T

). Therefore, we conclude our proof.



Contribution

Table: Comparison with related single-timescale actor-critic algorithms

Reference
Setting Sampling

Sample Complexity
State Space Reward Actor Critic

Olshevsky & Gharesifard Finite Discounted i.i.d. i.i.d. O(ϵ−2)

Chen et al. (2021) Infinite Discounted i.i.d. i.i.d. O(ϵ−2)

This Paper Infinite Average Markovian Markovian Õ(ϵ−2)

• We for the first time show the finite-time analysis of single-timescale
actor-critic under the Markovian sampling setting.

• We develop a new analysis framework that can be potentially applied to
analyze other single-timescale stochastic approximation algorithms.
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