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2. The VQ* Method
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( LLM: “Provide a caption that contradicts all context captions by )
making a minimal change in the input caption”
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( NLI model: Select the generated caption with the lowest entailment score )
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4 X M a I “ Exp e rl m e “ts Model SNLI-VE  Winoground DrawBench EditBench COCO t2i COCO-Con PickaPic-Con

: CLIP RN50x64 66.6 53.6 59.2 67.1 58.8 71.1 66.8
e Qur methods SUIPAssS prior CLIP ViT-L14 65.8 53.3 60.5 62.1 58.8 70.7 66.8

approaches in various text-image COCA VAT 14 68.5 53.1 67.4 66.3 62.1 74.2 68.1

COCA ViT-L14
. 70 53.1 66.2 68.3 66.2 76.5 67.2
alignment tasks (£.t on COCO)

BLIP 75.2 58.2 60.5 68 70.7 84.2 76.6
g : . BLIP2 76.4 56.9 58.5 67.5 66.9 84.3 76.9
* Significant Improvements In BLIP 2 (f.t. COCO) 75.9 60 65.7 70 73.3 85.8 78

challenging cases involving complex i 04 80 -y a8 120 e -
composltlon or Synthetlca"y VQ2 (Ours) 88.0 63.5 82.6 73.6 83.4 87.1 81.7
generated images OFA Large 80.5 53.3 77.6 70.9 67.5 75.4 69.5
Pal.l 95.1 61.7 82.8 65.5 77.7 91.2 83.7

. State-of-the-art results on the PaLl + Synthetic Data 942 61.8 77.2 83.2 91 85.9
challenging Winoground dataset Avg(VQ", PaLl+Syn) 939 63.5 - . 85.1 87.3

zero-shot

BLIP2 82.3 58.5 64.3 58.7 60.5 82.6 66.9

f.t. snli-ve

5. Contradiction Generation

» Qur VQ# method detects inconsistencies between images and
text by pinpointing question-answer pairs with the lowest VQA

: : : (a) “the orange lollipop is sad and  (b) “Someone in a blue hat stand; (c) “A black apple and a greeh
scores, proving effective across multiple datasets. the red lollipop is sucorised”  ing on a snowy il backpack”

Q: What is the orange lollipop Q: What is the person wearing? Q: What color is the apple? A:
feeling? A: sad A: blue hat black

(1) Winoground (2) CocoCon (3) DrawBench

DrawBench : COCO t2i
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 VQ# and VNLI scores are highly correlated with human
ranking in evaluating text-to-image models
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o, - Offers a way to evaluate dataset difficulty

[
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image-{ext alignment rati | Image-text alignment rati - Revealing DrawBench as a harder dataset compared to
COCO-t2i

1. Reranking Using Alignment Assessment
- Reranking image candidates - DrawBench and COCO-t2i

A brown and white cat is in a suitcase

» VQ2 and VNLI consistently achieves higher quality scores
compared to GLIP

- Dataset Model Rand CLIP Pall
» Showcasing the S SR 2
SD 1.4 68.6 74.6 88.2

1al i i COCO t21 '
pOtentIaI 1l enhanc"]g >D 2.1 i St S50 VQ? score: 0.878 (1%)  VQ?score: 0.846 (2")  VQ? score: 0.731 (37)  VQ’score: 0.717 (4)

X1- -im m SD 1.4 66.7 714 T4 Pall ft. score: 0.992 (1*)  Pallft. score: 0.992 (2")  Pall ft. score: 0.803 (3™)  Pall ft. score: 0.437 (4t
text-to-Image SYStems  rawench SD2.1 590 780 87.0 CLIP similarity: 0.236 (4h)  CLIP similarity: 0.238 (3%¢)  CLIP similarity: 0.253 (1%t)  CLIP similarity: 0.25 (29)




