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Background

* Contrastive learning is a state-of-the-art Features for

feature learning technique applied to labeled samp'es

classification and regression

e Can be used on unlabeled data for Labe'eglb:s;n MRI
VOoIlu

classification tasks and for unsupervised
model pre-training

* CanNOT be used on unlabeled data for " \ >
' Unlabeled brain MRI Features for y
regression tasks volume unlabeled samples

Can we extend contrastive learning methods for regression to a semi-
supervised setting?



Related Works

Unsupervised Contrastive Learning
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e Contrastive learning methods for classification

e Contrastive learning methods for regression

e AdaCon, Ordinal Entropy [1]

* Requires labels in order to enforce distance

relationships

o Tightness i Diversity . o
Fodsh o I TR H(Z) '
s31e’ ¥ by 0 i
‘ . . "'! ‘ .k 4
Features corresponding to  Cj ZC, - * Z,_-}. Features corresponding to Cj

[1] Zhang, Shihao, et al. "Improving Deep Regression with Ordinal Entropy." arXiv preprint arXiv:2301.08915 (2023).



Main Idea — Recovering rankings from similarity matrix

e Contrastive lea rning leads features on (a) Inferring rank from feature similarity (b) Inferring rank from feature similarity with noise
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* We can recover the rankmg of ~ (c) Recovering ordinal rank from feature similarity of unlabeled samples
. . Y Feature Y Feature Similarit Ordinal Ranking

unlabeled samples from their noisy > > N:ler::trisr’ spectral o 3

similarity matrix through spectral - ? N Seriation o s

it ? DI o ? _ — , a 2
seriation ? Cosine 7 o i - (R, — R,

‘;.' e Similarity ? min ;;SI,J(R; R}) E 2

? I ? R=Rankingof samples [l 1




Method — The Spectral Seriation Algorithm

Finding optimal ranking given similarity matrix

e For similarity matrix S, where samples closer together have
higher similarity values, spectral seriation finds the most likely
ranking of samples

* Spectral seriation minimizes the following:

. 2
arg}gnln Zi’j Sij (Rl- — Rj) '

where R is the rankings, §; ; are entries in similarity
matrix S

* R is obtained through loss minimization and can therefore
be robust to noise

The optimum point can be robust to shifts and
perturbations in the surface

Theorem 2 For a similarity matrix S € R™*™, suppose the error matrix of it is E € R™*". When

Az—A
1Bl < 23522,
where Ny, \3 are the second smallest and the third smallest eigenvalue of Laplacian matrix of S', the
Fiedler vector of S’ € R™"*™ is stable, so the seriation obtained by the spectral ranking algorithm is
robust to noise in S’.



Method — Constraining feature and predictions for unlabeled samples

Constraining similarity matrix and predictions for unlabeled samples

e Constraining similarity matrix for unlabeled samples
* We can use recovered sample rankings to constrain our similarity matrix for contrastive learning

* We ensure similarity values with respect to sample i follow the same ordering inferred from derived
rankings

|B]

LYC =3 0(rk(S) ), vk(=|R" = Rjy[); M),
=1

where [i, :] denotes the ith row in the matrix, [i] denotes the ith value of a vector, rk denotes the

ranking operator, and € is the ranking similarity function.



Method — Constraining feature and predictions for unlabeled samples

Constraining similarity matrix and predictions for unlabeled samples

e Constraining similarity matrix for unlabeled samples
* We can use recovered sample rankings to constrain our similarity matrix for contrastive learning

* We ensure similarity values with respect to sample i follow the same ordering inferred from derived rankings
|B]
ﬁbc = le (rk(sfz])a rk(_|Rf [t]l) )

where [i, :] denotes the ith row in the matrix, [i] denotes the ith value of a vector, rk denotes the

ranking operator, and € is the ranking similarity function

* Constraining predictions for unlabeled samples
* Rankings from spectral seriation are error tolerant and can also be used to supervise predictions

Bl
L0 = 32 ekl — ), (IR = Rig) ),

where [i] denotes the ith value of a vector



Method — Overall Framework (CLSS)

Contrastive learning with spectral seriation ' Existing works
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Unlabeled feature | = Ranking of samples Distance ranking

similarity matrix matrix (R'" — r’) Our method, CLSS

The total loss function £ of our method is:
SR SC ucC UR
L=L"4wscl? +wycl™”™ +wyrL”™,

where £58 £SC rUCgnd LUR represent the loss values of supervised regression, supervised contrastive loss, unsupervised contrastive
loss, and unsupervised ranking loss. Wsc, Wuc and WUR are the corresponding loss weights 8



Method — Overall Framework (CLSS)

Contrastive learning with spectral seriation
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Method — Overall Framework (CLSS)

Contrastive learning with spectral seriation
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Method — Overall Framework (CLSS)

Contrastive learning with spectral seriation Existing works
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Results — Experiments

* Validation on Brain Age estimation from MRI Scans

Comparison with state-of-the-art on IXI brain age estimation dataset
MAE]
Type Method 1/5 labels  1/4 labels  1/3 labels  1/2 labels

Supervised|Regression 1] .95 + 1.41 11.93 + 140 11.76 = 1.75 10.93 & 1.60}
Mean-teacher |11.23 £ 2.31 10.27 + 1.57 10.52 £ 3.12 12.01 + 2.03
Semi- CPS 10.23 + 1.41 10.27 £ 1.19 9.64 £+ 1.27 9.69 + 1.01

supervised |UCVME 0.83 + 1.32 10.86 + 1.67 9.65 &+ 1.31 10.06 £ 1.19

CLSS (Ours){[0.58 = 1.48 9.68 + 1.23 0.72 + 1.29 9.37 + 1.17

-

CLSS leads to more stable results and reduces reliance on healthy patients for labeled data
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Results — Experiments

* Synthetic dataset for non-linear operator learning

We train a model to solve the following PDE:

—div(e®®EW gu(z; w)) = f(x)

Comparison with state-of-the-art on synthetic PDE dataset

—a— Regression
—e—Regression+ L£L5€

Type Method 1/5 labels 1/4 labels 1/3 labels 1/2 labels —e—Regression+ L + L€
=== (|55 (Ours)

MAE] 0.10

Supervised |Regression 0.098 £+ 0.095 0.056 £+ 0.016 0.041 4+ 0.015 0.032 = 0.009

Mean-teacher | 0.080 £+ 0.089 0.047 + 0.021 0.043 4+ 0.019 0.029 + 0.011
0.04
Semi- CPS 0.057 £ 0.012 0.045 = 0.016 0.041 &= 0.015 0.028 %= 0.007 ‘\
e

supervised [ UCVME 1| 0.040 £ 0.008 0.033 + 0.008 0.027 & 0.007 0.028 £ 0.021 ; ' 1

YT T A P o v Py P P T ey Ty P S P Y
CLSS (Ours) {0.033 + 0.008 0.027 + 0.009 0.020 + 0.007 0.016 + 0.007 ! 0.00
e e e 10% 20% 30% 40% 50% 60%
Proportion of labeled data

CLSS outperforms state-of-the-art semi-supervised deep regression methods for all settings
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Results — Experiments

* \Validation on Age-Estimation from photographs

Comparison with state-of-the-art methods on AgeDB-DIR dataset

MAE]
Type Method 1/30 labels 1/25 labels 1/20 labels 1/15 labels
Supervised | Regression 10.14+0.25 9994+0.11 9.10+0.15 8.58+0.10
i Mean-teacher [28] | 10.05 £0.29 __9.99 £0.13 _9.05 £ 012 __8.62 £0.09 _
—— CPS [4] i 9994+0.12 983+0.10 8.99+0.14 8.47+£0.08 ;
Ours 1 995 +018 9.59+0.12 8.88+0.09 8.45+0.11 ;

e CLSS outperforms state-of-the-art semi-supervised deep regression methods for all settings

e CLSS can also be applied effectively to natural image datasets
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