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What can we expect from nonconvex optimization?
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@ High norm = high
difficulty.

Easy to devise arbitrarily
hard problems.

Smoothness to the rescue:

Smooth function can be
approximated in
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! Constant can be
exponential in d
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. Nonconvex \

optimization is hard,

but smoothness

allows to escape the

curse of
dimensionality /




Key ingredient: kernel Sum-of-Squares (k-50S)

gx) =dx)'Gpkx), G*>0

Analogous of linear kernel function: f(x) = w'¢(x)
Good properties:

o Positive everywhere by design

o Convex in the parameters

o Universal approximators

Global optimization

fx = infyex f(x)

= SUpPger € St. VX €X,f(x) =¢

Dense set of inequalities ?

Vx € X, flx)=c

|

Vx € X, f(x)—c=g),
g € k—SoS

Applications

Optimal Transport, Density
modeling, black-box optimization,
Kalman filtering...



General recipe for nonconvex optimization

fv = infyey f(X)

GloptiNets:
fi = supeer ¢ St VX EX,f(x) =c Definition
G = k-505 model
fx = SUpcergso € St VX E X, f(x) —c = g(x) Dense set of equality _ A
lullr = |fol
: : wEZ4
fv = SUpcergzo ¢ —If —¢ —gllz 0 Penalized version

fi = supeergeg € — If —¢ —gllz,xy  Strengthen constraint

fe = supcergeg ¢ —IIf —c —gllr Strenthen upper bound  llullz ) < llullf

Bound on the minimum is valid for any c, g !!!



Probabilistic estimate of the F-Norm

z £ gamion ZIwa _ z |fa) i —E ~/1[|fa)
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VA = Ifllr

== unbiased estimate of ||f||r !! Variance?
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#;: RKHS associated with 1,

Unbiased estimator
+ variance _ A 2miw-(x —y)
K(x,y) = E A,e
+ Chebychev bound / Median-of-Means / ... (x,7) @
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= Bound on F norm with probal —§ WEL



Requirements

GlOpthetS f.,: Fourier! coeff of f

”f” - norm of f Key ideas
Ha No a priori certificates; but an a posteriori
guarantee.
Input Output Leverage the good empirical optimization of
h: smooth function on (—1, 1)¢ Certificate € s.t. overpararpetrized functions with GPU
X: candidate |h(®) — h(x,)| < €5 computations
d: confidence With proba. 1 — 6.
Solve L(g) =c — |If —c —gllr < f, with g an
OP k-S0S model
Experiments "o poly, [All,, — 1

- @- kernel, ||kl =1
@- kernel, [|h|l,, = 2

No alternative we are aware of, except

when f is a polynomial.

« Complexity only depends on the norm
of f

» The bigger the model, the tighter the
certificate

Certificate valid for any ¢, g...

Certificate
(]

So minimizing the certificate gap is a non-
convex problem...

—

3
[ary
]

I But you can leverafge familiar OP models
whicR are empirically very good!
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10! 102 10  # params

1. Or Chebychev coeff. = Fourier coeff of f(cos2m -)



