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Electronic Design Automation (EDA) Learning And Mining from DatA

Function design and verification: design the RTL and verify the functions. (Document -> RTL)
Logic synthesis: mapping the RTL design into netlist. (RTL -> Netlist)

Physical design: design the physical layout according to netlist by EDA tools. (Netlist -> GDS)
Chip manufacturing: fabricate the chip from GDS layout by photolithography. (GDS -> Product)

Design Document || Logic Design(RTL) Netlist Chip Layout (GDS) Wafer Chip Products

module alu3l(Result, ALUOp, A, B, Zero) ;
output [ “ALULEN:0] Result;
req [*ALULEN 0] Result;
ut 2 ;
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Macro Placement
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Objectives: HPWL, congestion, density

Constraint: non-overlapping

Hnumber of macros: thousands

Full Placement Result
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. B Macros

Black-box, Multi-objective

Hard constraint

High-dimension
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Problems of the existing methods:

* Packing-based methods hardly handle standard cells, low efficiency

* Analytical placer objective definition, overlapping
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WireMask-BBO Framework

Solutions
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Improve efficiency
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WireMask-BBO Framework Learning And Mining from DatA
Solutions (a) (e)
S
et b luated B | | Improved solution : B':
GSo "'t:’" sl :a:_e ! (Phenotype representation) 1
(Genotype representation) HPWL = 11 :

We can modify the solution without concerning the constraint of overlap.

How to optimize? Random Search / Evolutionary Algorithm / Bayesian Optimization
* RS:randomly decide the coordinate of the macros

 EA: exchange 2 randomly selected macros

 BO: optimize the coordinate of the macros directly
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Comparison with state-of-the-art methods

Table 1: HPWL values (X 1075) obtained by ten compared methods on seven chips. Each result consists of the mean
and standard deviation of five runs. The best (smallest) mean value on each chip is bolded.

Packing-based

method \ Method Type adaptec] adaptec?2 adaptec3 adaptec4 bigbluel bigblue3 bigblue4 (x107) |+/ —/ ~] Avg. Rank
SP-SA [33] Packing  18.84+4.62 117.36+8.73 11548+7.56 120.03+425 5.12+143 164.70+19.55 2549+2.73 0/7/0 6.86
NTUPlace3 [12]  Analytical 26.62 321.17 328.44 462.93 22.85 455.53 48.38 0/7/0 9.00
Analytical { RePlace [13] Analytical 16.19+2.10 15326+29.01 111.21+11.69 37.64+1.05 245+0.06 119.84+34.43 11.80+0.73 1/6/0 5.28 Nature 2021
DREAMPIlace [28] Analytical 15.81+1.64 140.79+26.73 121.94+2505 37.41+0.87 244+0.06 107.19+2991 1229+ 1.64 1/6/0 4.86
Graph [32] RL 30.10£2.98 351.71£38.20 358.18 +13.95 151.42+9.72 10.58+1.29 357.48+47.83 53.35+4.06 0/7/0 m"
RL -I: DeepPR [15] RL 19.91+2.13 203.51+6.27 347.16+£4.32 311.86+56.74 2333+3.65 430.48+12.18 68.30+4.44 0/7/0 8.86
MaskPlace [26] RL 6.38+035 73.75+635 84.44+360 7921+0.65 239+005 91.11+7.83 11.07 £0.90 0/7/0 4,28
Our { WireMask-RS Ours 6.13£0.05 59.28+148 60.60+045 6206022 2.19+£0.01 62.58 +2.07 8.20 £0.17 0/5/2
WireMask-BO Ours 6.07+0.14 59.17+394 61.00+2.08 6386+1.01 2.14+0.03 67.48+6.49 8.62+0.18 0/3/4 2.86
methods WireMask-EA Ours 591£0.07 52.63+223 57.75+1.16 58.79+1.02 212x0.01 59.87 +3.40 8.28 £0.25 — 1.43

WireMask-EA achieves the best average rank, and performs the best on 5 out of 7 chips.

WireMask-EA is significantly better than any previous method on at least 6 out of the 7 chips.
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Comparison on wall clock time
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WireMask-EA is better than two concurrent state-of-the-art methods
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Fine-tune existing placement

Table 5: HPWL (X 1075) values obtained after fine-tuning existing placements by running WireMaskEA for 1,000 minutes.

Method adaptecl adaptec2 adaptec3 adaptec4 bigbluel bigblue3 Avg. Imp.
SP-SA [33] 18.84 117.36 115.48 120.03 5.12 164.70 53.03%
+WireMask-EA (1000min)  6.02+0.11 60.35+4.41 57.88+£0.62 59.50+£092 221+0.02 82.68+18.17 R0
MaskPlace [26] 6.56 79.98 79.32 75.75 242 82.61

+WireMask-EA (1000min)  5.84+0.10 61.43+1.23 5924+271 6035+138 2.10+£0.01 7493+7.79 17.06%

WireMask-EA takes any existing placement as the initial solution, and further optimize it.

The fine-tuning result of state-of-the-art method MaskPlace shows significant improvement.
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Conclusion

A general framework WireMask-BBO is proposed for solving macro placement task
and can be equipped with any BBO algorithms.

* Experiments show the superior performance of WireMask-BBO over previous
packing-based, analytical and RL-based methods.

 WireMask-BBO can be combined with any existing macro placement methods to fine-
tune and further improve the placement result.

Limitations
* It can only deal with macro placement, leaving standard cells for analytical placers.

* The performance is limited for chips with large number of macros (e.g. bigblue4 with
over 8,000 macros), due to expensive objective evaluation.
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Thank you for your listening!
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