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Background

o Diffusion model: A generative model establishing a stochastic
transport map between an empirically observed, yet unknown, target
distribution and a known prior.
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Background

o Diffusion model: A generative model establishing a stochastic
transport map between an empirically observed, yet unknown, target
distribution and a known prior.

@ Real-world applications: DALL-E, Imagen, Stable Diffusion...

@ Theoretical foundations of diffusion models remain under-explored,
particularly, the fundamental generalization problem
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Formulation

x(0) dz = f(@.t)dt + g(t)dW; x(T)

da = [f(:c,t) — PV, logpi(z)]dt +gtyaw, —— x(7T)

1
R sio(@) =~ Ao(Wa +Uelt).0= A

Target: Finitely-supported prob. & Gaussian mixtures Notations:
t: SDE time T : maximal SDE time
pr ~ m:aknown prior

Loss: Time-dependent score matching (Eq. (7))

Algorithm: Gradient flow S
T : training time
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Main Result |

Theorem (Data-Independent Generalization Gap)

Suppose pg is continuously differentiable with a compact support set,
and there exists a reproducing kernel Hilbert space (RKHS) H (:=Hx,,)
such that §, 5. € 1. Assume the initial loss, trainable parameters, the

embedding function e(t) and weighting function \(t) are all bounded.
Then with high probability, we have

™ 3 1 1 3 = P
Dxi, (pOHpO,é,,(T)) 5 |:% aF == 7—_] 4= |:E + L (0*) + ,C(e ):| + D1, (PT”’JT) .
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v

o Early-stopping generalization gap:

4
5

Tes = O (né) - Dk (pOHpo’én(Tes)) < (1/n)3 + (1/m)
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Early-Stopping Generalization

KL divergence
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Figure: The KL divergence dynamics.
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Main Result Il

Figure: Illustration of modes shift.

Theorem (Data-Dependent Generalization Gap)

Suppose po(x) = N (x; —p, 1) + N (x; i, 1), where g1, g2 > 0 with
g1 + g2 = 1. Under the same conditions, with high probability we have

Dk, (Po ||p0,én(r)>

< T4 T3 1 ,U,2 = N * ~ *
< Poly(u) {% + F] +-+ {E +L(6%)+L(6 )] + Dk (pr]|7).
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Modes Shift Effect
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Figure: Training dynamics when the distance between two modes is 6 (1 = 3).
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Figure: Training dynamics when the distance between two modes is 30 (u = 15).
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Real-World Experiment

U-net + MNIST:
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Figure: The training loss dynamics.
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Real-World Experiment
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Figure: Sampling from the farthest (left) and nearest (right) clusters.
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Conclusion

@ Data-independent regime: For target distributions with finite
supports, diffusion models have polynomially small generalization
errors in n (sample size) and m (model capacity) with early-stopping.
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Conclusion

@ Data-independent regime: For target distributions with finite
supports, diffusion models have polynomially small generalization
errors in n (sample size) and m (model capacity) with early-stopping.

@ Data-dependent regime: For target distributions with increasing
modes distances, the generalization performance of diffusion models
becomes significantly worse.
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Thank youl!
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