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Background

Diffusion model: A generative model establishing a stochastic
transport map between an empirically observed, yet unknown, target
distribution and a known prior.

Real-world applications: DALL·E, Imagen, Stable Diffusion...

Theoretical foundations of diffusion models remain under-explored,
particularly, the fundamental generalization problem
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Formulation
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Main Result I

Theorem (Data-Independent Generalization Gap)

Suppose p0 is continuously differentiable with a compact support set,
and there exists a reproducing kernel Hilbert space (RKHS) H (:=Hkρ0

)
such that s̄0,θ̄∗ ∈ H. Assume the initial loss, trainable parameters, the

embedding function e(t) and weighting function λ(t) are all bounded.
Then with high probability, we have
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Early-Stopping Generalization

Figure: The KL divergence dynamics.
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Main Result II

Figure: Illustration of modes shift.

Theorem (Data-Dependent Generalization Gap)

Suppose p0(x) = q1N (x ;−µ, 1) + q2N (x ;µ, 1), where q1, q2 > 0 with
q1 + q2 = 1. Under the same conditions, with high probability we have
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Modes Shift Effect

Figure: Training dynamics when the distance between two modes is 6 (µ = 3).

Figure: Training dynamics when the distance between two modes is 30 (µ = 15).
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Real-World Experiment

U-net + MNIST:

Figure: The training loss dynamics.
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Real-World Experiment

Figure: Sampling from the farthest (left) and nearest (right) clusters.
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Conclusion

Data-independent regime: For target distributions with finite
supports, diffusion models have polynomially small generalization
errors in n (sample size) and m (model capacity) with early-stopping.

Data-dependent regime: For target distributions with increasing
modes distances, the generalization performance of diffusion models
becomes significantly worse.
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Thank you!
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