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Motivation

1. Remove dependency on the patch for
classifying the skin lesion as
non-cancerous

2. Do not depend on the background for
classifying the leaf as healthy or not

3. Decoy-MNIST: Ignore the label-revealing
half and only rely on digit half to label
the image.
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Motivation (continued...)

Motivation: It is surprisingly hard to alter ML model’s prediction behavior
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Popular solutions:
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1. Collect massively diverse data to negate - L ‘ -
such spurious correlation 2 | i ‘,a.!

2. Collect some data from each group and

impose an invariance constraint across plant
environments. phenotyping

Collecting more data is very expensive (especially in healthcare)
Invariance-like methods still suffer when the minority group is not sufficiently large



Our problem and objective

Objective: Let user provide richer annotation and use it to learn better aligned models
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Problem :
1. Process inputs along with saliency map e |

highlighting nuisance features e " ( “ l '

2. Learn a model that ignores the
irrelevant regions highlighted by the
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Background

Standard approach: train a model such that saliency of masked region is near zero.

An explanation algorithm (E) to assign importance scores to input features: IS(x),
which is then regularized with an R(8) term such that irrelevant features are not

regarded as important.
IS(x) £ E(x, f(x;0)).

N
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n=1

g = argrrbin {Zﬁ (f(x(”);ﬂ),y(")) +

n

Ross et.al. 2017, Rieger et.al. 2020, Shao et.al. 2021
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Background

Explanation Algorithm

Citation

Gradient explanation

Contextual decomposition based
explanation (Singh et al. (2018))

Influence functions
Concept Explanations

LIME

Grad-Reg (Ross et.al. 2017)

CDEP (Rieger et.al. 2020)

Shao et al. (2021)
Stammer et.al. (2021)

Schramowski, P. (2020)



Our findings

Regularization-based although popular are not effective

201 = cem——

(a) Toy data (b) Grad-Reg with 8=0 (c) Grad-Reg with =1

Figure 1: Illustration of the uneasy relationship between Grad-Reg and smoothing strength. (b)
The decision boundary is nearly vertical (zero gradient wrt to nuisance y-axis value) for all training
points and yet varies as a function of y value when Grad-Reg fitted using 5 = 0. (c¢) Grad-Reg
requires strong model smoothing (8 = 1) in order to translate local insensitivity to global robustness
to x-coordinate. (d) IBP-Ex fits vertical pair of lines without any model smoothing.



Analysis for why robustness-based better than regularization-based

f~GP(0,K); k(z,%) = exp(— Y, (; L),
0;% ~ G(a, B);ie. E[6;*] = /P

Theorem 1 (Grad-Reg). We infer a regression function f from a GP prior as described above with the
additional supervision of [0f (x)/0xs3]|,@)y =0, Vi € [1, N|. Then the function value deviations

to perturbations on irrelevant feature are lower bounded by a value proportional to the perturbation
strength 6 as shown below.

Fx+[0,67) — f(x) > 32—“—@(w%m2 + 62343 5)

a/B must be set to a small value, i.e. theta large to limit function deviations.

l.e. the function must be smooth for the regularization of local explanations to apply
globally.



Robustness instead of regularization

Robustness to perturbation drawn from human specification
Our methodology is built on the interpretation of the provided mask as a specification
of a low-dimensional manifold from which input perturbations are drawn.

e:|l€||co <k

6" = argmeinz {E (f(x(");H),y(")) +a max / (f(x(”) + (e ® m(”));e),y("))




Robustness instead of regularization (continued...)

—argmmZ{ ( x(M); ), (")) +a  max E(f(x(”)—|—(e®m(n));9),y("))

€:|l€]lco <k

How the inner maximization is solved
Avg-Ex Approximate max with MC average

PGD-Ex | Solve inner maximization using PGD (Madry et.al. 2017)

IBP-Ex Minimize an upper certifiable bound on the worst perturbation (possible
for smallish networks) (Mirman et.al. 2018, Gowan et.al. 2018)
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Promise of robustness-based methods

Define C as the maximum distance of any point in the domain to the closest point
covered by the defense, i.e. Cis the strength of the defense method

Theorem 2. When we use a robustness algorithm to regularize the network, the fitted function has
the following property.
e

B

Omaz ANd frae are maximum values of Axs and f(X) in the input domain (X') respectively.

|f(x+[0,0]") — f(x)| < 2C—0mazfmas- (6)

Can bound the deviation if the defense is decent (C is small) without having to smooth
the function
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Our findings

Regularization-based although popular are not effective

201 & ce— 0] * cem——

(a) Toy data (b) Grad-Reg with 8=0 (c) Grad-Reg with =1 (d) IBP-Ex with =0

Figure 1: Illustration of the uneasy relationship between Grad-Reg and smoothing strength. (b)
The decision boundary is nearly vertical (zero gradient wrt to nuisance y-axis value) for all training
points and yet varies as a function of y value when Grad-Reg fitted using 5 = 0. (c¢) Grad-Reg
requires strong model smoothing (8 = 1) in order to translate local insensitivity to global robustness
to x-coordinate. (d) IBP-Ex fits vertical pair of lines without any model smoothing.

12



Robustness-based have curse of dimensionality

= argmmZ{ ( x(M); ;0), (n)) +a max /¢ (f(x(") + (e@m(”));e),y("))}

€:|l€]lco <k

Inner maximization quickly gets harder to solve as the input dimensionality increases.

Proposition 1. Consider a regression task with D + 1-dimensional inputs x where the first D
dimensions are irrelevant, and assume they are x4 = y,d 6 [1, D) while zp+1 ~ N (y,1/K). The

MAP estimate of linear regression parameters f(x) = Z de wd.’cd when fitted using Avg-Ex are as
follows: wg =1/(D+ K), de€[l,D]andwp,; = K/(K + D).
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Our Work

Could be advantageous to combine robustness and regularization-based methods for
complementary strengths

We did a systematic study of

(a) Regularization-based: Grad-Reg, CDEP

(b) Robustness-based: PGD-Ex, IBP-Ex

(c) Their combination: IBP-Ex + Grad-Reg, PGD-Ex + Grad-Reg

for the problem of effective learning from human-specified explanations.
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Results
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Results
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Results

Dataset— | Decoy-MNIST Plant ISIC S-Imagenet
Method, Robust Accuracy
ERM 10.5 + 5.4 548 £ 1.3 | 55.9 £ 2.3 87.5
G-DRO 28.1 = 0.1 58.0 £ 4.6 | 58.5 £ 10.7 -
Grad-Reg 46.2 + 1.1 68.2 =14 60.2 &+ 7.4 82.2
CDEP 10.0 & 0.7 54.2 + 24.7 | 60.9 £+ 3.0 -
Avg-Ex 195 £ 1.4 64.5 4+ 0.3 59.2 + 6.6 -
PGD-Ex 51.4 + 0.3 785+ 0.3 | 64.4 + 4.3 90.2
IBP-Ex 47.6 £+ 2.0 73.8 £ 1.7 | 642 £ 1.2 -

Robustness-based methods are better




Results

Regularization + robustness is even better as expected

ERM 10554 | 548 £13 | 550 £ 2.3 375
GDRO | 281401 | 58.0%4.6 | 58.5 = 10.7 -
GradReg | 462+ 1.1 | 682+ 1.4 | 60.2 £ 74 32.2
CDEP | 100407 |54.2+247 | 60.9 + 3.0 -
AvgEx | 195+14 | 64503 | 552 £ 6.6 :
PGD-Ex | 514403 | 785+03 |64.4+4.3| 902
IBP-Ex | 47.6+£20 | 738417 | 642412 -
™A P1G | 958+04 | 767£28 |675L1.1| 93.8
+G 95.0 + 0.6 | 80.1 + 0.3 | 65.2 + 1.8 -
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Takeaways

® We presented intuition and theoretical analysis for why regularization-based
methods are not suited for supervising with human explanations.

e We studied robustness-based method for supervising with human-explanations,
which is surprisingly not studied before.

® Our systematic study and analysis showed advantage in combining robustness and
regularization-based methods for effective supervision.
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Future and Limitations

Reducing human effort.

(a) Assistance in providing human explanations
(b) Partial specifications

(c) Automated discovery of regions
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