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Multi-armed Bandits

The agent interacts with the environment for T rounds.
In each round t, the agent chooses an action a; € [K]

Standard reward r; is generated independently from inlier
distribution.

After contamination, the agent observes contaminated reward
Xt.
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Robustness:
Two Classes of Heavy-tailed Reward Distributions

Definition (Finite k-th raw moment)

A distribution over R is said to have a finite k-th raw moment if it is
within
Pi={P:Ex-p |IXIF] <1}, K22,

where k is considered fixed but arbitrary.

Definition (Finite k-th central moment)

A distribution over R is said to have a finite k-th central moment if
it is within

Pe={P Exwr [IX-u] <1}, K22,

where p:=Ex.p[X] € [-D,D]and D > 1.
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Robustness:
Huber Model

Definition (Heavy-tailed MABs with Huber contamination)

Given the corruption level « € [0,1/2). For each round t € [T], the
observed reward x; for action a;, is sampled independently from
the true distribution P,, € Py (or Py, € P¢) with probability 1 — o;
otherwise is sampled from some arbitrary and unknown
contamination distribution Gz, € G.
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Definition (Differential Privacy for MABSs)

For any ¢ > 0, a learning algorithm M : RT — [K]T is ¢-DP if for all
sequences Dr, Dy € RT differing only in a single element and for all
events E c [K]", we have

P[M(Dr) € E] < e -P[M (D}) € E].
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pa: the mean of the inlier distribution of arm a € [K];

® [ = Maxge[k] Mai

Me: the set of all e-DP MAB algorithms;

Eq k- the set of all instances of heavy-tailed MABs (with
parameter k) with Huber contamination (of level «).

Definition (Clean Regret)

Fix an algorithm = € N and an instance v € &, k. Then, the clean
regret of = under v is given by Ry(m,v) :=E; ,[Tp* — ZL La,]-

To capture the intrinsic difficulty of the private and robust MAB
problem, we are also interested in its minimax regret.

Definition (Minimax Regret)

The minimax regret of our private and robust MAB problem is

defined as R?E,i(max = infrene sup,ce,  Brp[To" — ZL1 La)-

= wyort
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Lower Bound

Theorem

Consider a private and robust MAB problem where inlier distributions
have finite k-th raw (or central) moments (k > 2). Then, its minimax
regret satisifes

1

R = (VRT + (/' 4 T+ Tl

x|=
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A Meta Algorithm

Algorithm 1 Private and Robust Arm Elimination

1: Input: Number of arms K, time horizon T, privacy budget ¢, Huber parameter o € (0,1/2),
error probability § € (0, 1], inliner distribution parameters i.e., k and optional D.

2: Initialize: 7 = 0, active setof arms § = {1,--- , K'}.

3: for batchT =1,2,... do

4 Set batch size B, = 27.
5. if B, < T then
6: Randomly select an action a € [K].
7 Play action a for B, times.
8 else
9: for each active arm o € S do
10: for : from 1 to B, do
11: Pull arm a, observe contaminated reward z¢.
12: If total number of pulls reaches 7', exit.
13: end for
14: Set truncation threshold M.
15: Set additional parameters ®.
16: Compute estimate /i, = PRM({z¢}2", M., ®).
17: end for
18: Set confidence radius ;.
19: Let fimax = MaX4e8 [la-
20: Remove all arms a from S s.t. fipax — fa > 268-.
21:  endif
22: end for
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Finite Raw Moment Case

Algorithm 2 PRM for the finite raw moment case

1: Input: A collection of data {z;}7,, truncation parameter M, additional parameters ® = {¢}.
2: for i=1,2,...,ndo

3:  Truncate data 7; = x; - L{ja;|<nr}-

4: end for W

5: Return private estimate i = Lina &y Lap(2M).

n

Theorem (Performance Guarantees)

Consider a private and robust MAB with inlier distributions satisfying
Definition 1 and 0 < o < aq € (0,1/2). Let Algorithm 1 be instantiated

with Algorithm 2 . Set T = 9(%) and 6 = 1/T. Then Algorithm 1 is
e-DP with its regret upper bound

k—1
Tk 1
ero( KTIogT-I—(KIOgT) ’ T1+Ta1_k+K|°gT).
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o
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Yulian Wu (KAUST) On Private and Robust Bandits November 11, 2023 14/21



Finite Central Moment Case

Algorithm 3 PRM for the finite central moment case
1: Input: A collection of data {z;}2",, truncation parameter M, additional parameters ® =
{¢,D,r},r €R.

: // First step: initial estimate

:Bj=[jj+r),je I ={-D,-D+r,...,.D—r}.

: Compute private histogram using the first fold of data: p;

: Get the initial estimate J = arg max;c s p;.

: // Second step: final estimate

: Get final estimator using the second fold of data: g = J + % E?2n+l(Xi — Dlgx,—5<my +
Lap (% .

_ X lxien))
n

+ Lap ().

Nk Wi
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Finite Central Moment Case
Theorem (Performance Guarantees, o = 0)

Let Algorithm 1 be instantiated with Algorithm 3. Set T = Q('°g(D/ ‘5))
and § = 1/T. Then, Algorithm 1 is e-DP with its regret upper bound

Ry = O(v/KTlog T+(Klog T/e) % Th+),
where v := O (KD log(DT)/e).

|

Theorem (Performance Guarantees, o > 0)

For a < ay € (0,0.133), let Algorithm 1 be instantiated with Algorithm
3. Set 6 =1/T, then Algorithm 1 is e-DP with its regret upper bound

_ 1
Ry = O(vKTlog T+(Klog T/e)' % Ti+Ta) *+4),

oL DK log T DK log T DK log(DT) 1—o
Wherefy._O( oz T R— and v = 52z

1 €
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PRAE-R: Our Algorithm for Finite Raw Moment Case
PRAE-C: Our Algorithm for Finite Central Moment Case
DPRSE [Tao et al., 2021]: DP heavy-tailed MAB

RUCB [Kapoor et al., 2019]: non-private robust algorithm
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Figure: Experimental results under Pareto distribution
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Experiments
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Figure: Experimental results under Student's ¢ reward
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