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Overview

How to learn the latent space energy-based prior model through MLE?

MLE Pros: MLE Cons:

* Principled * Requires MCMC

« Good asymptotic properties e Short-run MCMC is biased
« Etc. * Long-run MCMC is

Our Solution:
of MCMC



Method

Background: Latent Space Energy-Based Prior Model

Complete data distribution:
1

pe(2, ) := pa(2)pa(x|2), palz) := 7 oD (fa(2)) Po(2),

Learning gradients of the prior model:
50!(3:) = IEpg(zlzz:) [Vafa(z)] - ]Epa(Z) [vafa(z)] J 5,3(:13) = ]Epg(zlm) [vﬁ logpg(:v|z)] .

Langevin dynamics for sampling:

2

s
Zir1 = 2t + Evzt logm(z¢) + swy, t=0,1,...,T — 1, w; ~ N(0,1)



Method

Amortizing MCMC

g, < arg n;)inD[qd,k_l,Tqug], 9¢,_..17 = Krqe, ., 9, ~ T, k=0,..., K — 1.
qe€

Given the transition kernel K:

a) Employ a T-step short-run LD initialized with the current sampler g4, . to
approximate Krq¢, . as the target distribution of the current sampler

b) Update the current sampler g4, . 10 q¢,



Method

Diffusion-based amortization:
2+1 7 ' 0 M s i
Ecjl) = 2:11 o nvd)lEes)\ [IIG(Z/\) i 6”%] ’ ;c ) S Eg_z’ t = 07 ]-’ seey M-1

a) For the choice of g4, let us consider distilling the gradient field of target g in
each iteration, so that the resulting sampler is close to the target distribution.

b) This naturally points to the DDPMs. To be specific, learning a DDPM with €-
prediction parameterization is equivalent to fitting the finite-time marginal of
a sampling chain resembling annealed LD.

c) We can plug in the objective of DDPM, which is a lower bound of loggg , to
obtain the gradient-based update rule for q.



Method

Diffusion-based amortization:

k= 0,0 — 1

Figure 1: Learning the DAMC sampler. The training samples for updating the sampler to ¢, . ; is obtained by
T'-step short-run LD, initialized with the samples from the current learned sampler ¢, . Best viewed in color.



Experiments
Amortizing Long-Run (1k-3k stps.) MCMC

The 2-arm pinwheel-shaped prior distribution used in the toy example.

Neural likelihood experiment:

a) The true posterior distributions are multimodal.

b) Posterior obtained by performing LD sampling
until convergence.

c) Our method can amortize long-run chains w/
the length of 1k-3k steps.

(a) Evolution of the learned posterior distributions



Experiments

Generation and Inference: Prior and Posterior Sampling

.' _:‘~’~ - ;
(c) CIFAR-10

(d) CelebA-HQ

Figure 2: Samples generated from the DAMC sampler and LEBM trained on SVHN, CelebA, CIFAR-10
and CelebA-HQ datasets. In each sub-figure, the first four rows are generated by the DAMC sampler. The last
four rows are generated by LEBM trained with the DAMC sampler.

(a) SVHN

B Prior model learned by our method demonstrates better generation quality.

_ SVHN CelebA CIFAR-10 CelebA-HQ
ode MSE FID MSE FID MSE FID MSE FID

VAE [1] 0019 4678 0021 6575 0057 10637 0031 18049
2s-VAE [48] 0019 4281 0021 4440 0056 7290 - i
RAE [49] 0014 4002 0018 4095 0027 74.16 ]
NCP-VAE [50] 0020 3323 0021 4207 0054 78.06 ;
Adaptive CE* [41]  0.004 26.19 0009 3538 0.008 6501 - ]
ABP [51] ~ 4971 - 5150 0018 9030 0025 16021
SRI [24] 0018 4486 0020 61.03 - - i ;
SRI(L=5)[24] 0011 3532 0015 4795 - - ; ;
LEBM [22] 0008 2944 0013 3787 0020 70.15 0025 133.07
Ours-LEBM 21.17 35.67 60.89 89.54
OurssDAMC 0002 7556 0005 3583 0015 59, 0023 o5ss

B Posterior samples from the proposed method produces sharper

reconstruction results.
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Thank you



