

ASPEN:

Breaking Operator Barriers for Efficient Parallel Execution of Deep Neural Networks

Jongseok Park¹ with Kyungmin Bin¹, Gibum Park¹, Sangtae Ha², and Kyunghan Lee¹ ¹Seoul National University, ²University of Colorado Boulder

NeurIPS 2023, December 10th – 15th, New Orleans, Louisiana

NXC LAB

Current Computation of DNNs

- □ Current Solution: Operator-based Two-level Computation
 - 1. High-level frameworks (e.g., PyTorch) schedule operators to Computation Libraries.
 - 2. Computation Libraries (e.g., cuDNN) execute operators in parallel, using Tiles.

Unit of parallel computation. Operators are partitioned into tiles, and scheduled to parallel execution units.

Problem of Operator-based Dataflow Graphs

- Operators require Synchronization barriers!
 - Synchronization barriers are used to ensure all tiles are executed.
 - Barriers guarantee the satisfaction of dependency before executing the next operator.
 - However, barriers also isolate the scope of computation within an operator.

Breaking the Operator Barriers

- Breaking the operator barriers reveals rich dataflow relationships
 - Rich dataflow relationships between tiles are hidden behind operator boundaries.
 - Breaking (removing) operator barriers reveals these rich relationships.
 - Rich dataflow relationships expose new opportunities!
 - ➤ New parallel computations, data reuses, asynchronous executions...

Main idea of ASPEN

- A system that can dynamically utilize novel computational opportunities!
 - Break synchronization barriers to expose fine-grained computational opportunities
 - Each resource dynamically tracks and identifies computation opportunities during runtime
 - Asynchronously schedule and execute the opportunities for maximum utilization
 - > "Using fine-grained dynamic execution of DNNs, ASPEN achieves Opportunistic Parallelism"

Benefits of ASPEN

- □ ASPEN's novel execution brings following benefits...
 - 1. Graph-wide scope of parallel scheduling enables maximal parallelism
 - 2. Dynamic, distributed runtime improves utilization, scalability, and load-balancing
 - 3. Asynchronous execution interleaves of computation, data movement, and scheduling
 - 4. Novel depthwise scheduling approach increases data reuse

- Design challenges in ASPEN
 - How to break the barriers in a generalized way, applicable to any DNNs and operators?
 - How to create a runtime that can dynamically exploit the opportunities of fine-grained DNNs?
 - How can the asynchronous system share execution information, for correctness of the DNN?

- System Component Overview
 - Automated Parallelism Unit (APU) Parses DNNs into tile-based graphs.
 - Distributed Scheduling Engine (DSE) Traverse & schedules graph nodes (tiles)
 - Ready Pool Stores graph nodes that are ready for execution (DNN agnostic)

- □ Automated Parallelism Unit (APU)
 - Parses operator-based DNN description and partitions each operator output into tiles
 - Graphs the DNN into tile-based dataflow graph based on tile-wise dependency
 - Merges nodes into larger nodes (tiles) to simplify graph construction and increases per-tile kernel efficiency.

- Distributed Scheduling Engine (DSE)
 - Exists per execution unit Higher scalability.
 - Asynchronous graph traversal Maximal workload scheduling.
 - Isolation of resources Less communication, higher utilization.
 - Depth-first execution For increased data reuse.

- Ready Pool
 - Stores dependency-satisfied nodes (tiles), regardless of the origin DNN.
 - Uses a matrix of concurrent queues where each row is prioritized to each DSE.
 - DSE can steal nodes from other DSE's rows if its row is empty. (load-balancing)
 - Scheduling policies provided using hash function and priority queue accesses.

N X C LAE

Evaluation (ResNet-50, Batch = 32)

□ Dynamic Adaptation (Intel i9-12900K, 8 Performance + 8 Efficiency Cores)

Applications of ASPEN

□ The benefits of ASPEN is not only limited to performance!

Out-of-the-box multi-tenant execution of different DNNs

Executing only the changed portion of DNN in a video stream

Dynamic pruning of DNNs

Applications of ASPEN

□ Also, in networked computing scenarios such as in Inference Servers...

Interleaving of multiple DNN inference computation and communication

Fine-grained multi-machine scheduling of DNNs

Dynamic addition and removal of parallel resources while execution

Thank you!

Presenter – Jongseok Park cakeng@snu.ac.kr

Paper Link

