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Current Computation of DNNs

0 Current Solution: Operator-based Two-level Computation
1. High-level frameworks (e.g., PyTorch) schedule operators to Computation Libraries.

2. Computation Libraries (e.g., cuDNN) execute operators in parallel, using Tiles.
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Problem of Operator-based Datatlow Graphs

0 Operators require Synchronization barriers!

= Synchronization barriers are used to ensure all tiles are executed.

= Barriers guarantee the satisfaction of dependency before executing the next operator.
= However, barriers also isolate the scope of computation within an operator.

(a) Operator-based DNN Graph
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Breaking the Operator Barriers

0 Breaking the operator barriers reveals rich dataflow relationships

= Rich dataflow relationships between tiles are hidden behind operator boundaries.

= Breaking (removing) operator barriers reveals these rich relationships.
= Rich dataflow relationships expose new opportunities!

> New parallel computations, data reuses, asynchronous executions...

(a) Operator-based DNN Graph
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e —
Main idea of ASPEN

0 A system that can dynamically utilize novel computational opportunities!
= Break synchronization barriers to expose fine-grained computational opportunities
= Each resource dynamically tracks and identifies computation opportunities during runtime
= Asynchronously schedule and execute the opportunities for maximum utilization

> "Using fine-grained dynamic execution of DNNs, ASPEN achieves Opportunistic Parallelism”
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Benefits of ASPEN

0 ASPEN's novel execution brings following benefits...

1. Graph-wide scope of parallel scheduling enables maximal parallelism
2. Dynamic, distributed runtime improves utilization, scalability, and load-balancing
3. Asynchronous execution interleaves of computation, data movement, and scheduling
4. Novel depthwise scheduling approach increases data reuse
AExec:ution Time AExecution Time AExecution Time
. . . . Asynchronous
Tile Queueing
Launch Operator 2
1 1 Computation
2 & 2 E N
Launch Operator 1 Launch Operator 2
Launch Operator 0 Launch Operator 0 & 1 1 1 . .
> > >
EU| [EU] [EU] [EU] [EU EU]| [EUu] [EU] [EU] [EU EU] [EU] [EU] [EU] [EU
Operator-wise Scheduling Operator Fusion ASPEN  Execution
Units
94,44~“!.~.?

X SEOUL NATIONAL UNIVERSITY N x c I'AB




ASPEN System Design
0 Design challenges in ASPEN

= How to break the barriers in a generalized way, applicable to any DNNs and operators?
= How to create a runtime that can dynamically exploit the opportunities of fine-grained DNNs?
= How can the asynchronous system share execution information, for correctness of the DNN?
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ASPEN System Design

o System Component Overview
= Automated Parallelism Unit (APU) — Parses DNNs into tile-based graphs.
= Distributed Scheduling Engine (DSE) — Traverse & schedules graph nodes (tiles)
= Ready Pool - Stores graph nodes that are ready for execution (DNN agnostic)
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ASPEN System Design 9

0 Automated Parallelism Unit (APU)

= Parses operator-based DNN description and partitions each operator output into tiles
= Graphs the DNN into tile-based dataflow graph based on tile-wise dependency

= Merges nodes into larger nodes (tiles) to simplify graph construction and increases per-tile
kernel efficiency.
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ASPEN System Design 10

0 Distributed Scheduling Engine (DSE)
= Exists per execution unit — Higher scalability.
= Asynchronous graph traversal — Maximal workload scheduling.
» |solation of resources — Less communication, higher utilization.
= Depth-first execution — For increased data reuse.
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ASPEN System Design :
0 Ready Pool

= Stores dependency-satisfied nodes (tiles), regardless of the origin DNN.

= Uses a matrix of concurrent queues where each row is prioritized to each DSE.
= DSE can steal nodes from other DSE's rows if its row is empty. (load-balancing)

= Scheduling policies provided using hash function and priority queue accesses.

Row-wise multi-level priority queue in pop()
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Evaluation (ResNet-50, Batch = 32)
O Dynamic Adaptation (Intel i9-12900K, 8 Performance + 8 Efficiency Cores)

E-cores Only @ P-cores Only
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_
Applications of ASPEN ”

0 The benefits of ASPEN is not only limited to performance!

I Out-of-the-box multi-tenant execution of different DNNs I
I Executing only the changed portion of DNN in a video stream I
I Dynamic pruning of DNNs |
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Applications of ASPEN

o Also, in networked computing scenarios such as in Inference Servers...

Interleaving of multiple DNN inference computation and communication

Fine-grained multi-machine scheduling of DNNs

Dynamic addition and removal of parallel resources while execution
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Thank youl!

Presenter — Jongseok Park
cakeng@snu.ac.kr

SEOUL NATIONAL UNIVERSITY




	슬라이드 1: ASPEN:  
	슬라이드 2: Current Computation of DNNs
	슬라이드 3: Problem of Operator-based Dataflow Graphs
	슬라이드 4: Breaking the Operator Barriers
	슬라이드 5: Main idea of ASPEN
	슬라이드 6: Benefits of ASPEN
	슬라이드 7: ASPEN System Design
	슬라이드 8: ASPEN System Design
	슬라이드 9: ASPEN System Design
	슬라이드 10: ASPEN System Design
	슬라이드 11: ASPEN System Design
	슬라이드 12: Evaluation (ResNet-50, Batch = 32)
	슬라이드 13: Applications of ASPEN
	슬라이드 14: Applications of ASPEN
	슬라이드 15

