Large Language Models of Code Fail at
Completing Code with Potential Bugs

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, @
Leonard Lausen, Sheng Zha, and George Karypis ,
University of Wisconsin-Madison AWS Al Research and Education

SN,

2% "NEURAL

*%7.. INFORMATION

'.f- *» PROCESSING
*)*SYSTEMS




Code Completion with Code Language Models



Code Completion with Code Language Models

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False."""

Ve
from typing import List N
def below_zero(operations: List[int]) -> bool:
balance = © > Partial code

for op in operations:
balance += op
if balance < 0: /




Code Completion with Code Language Models

""" You're given a list of deposit and withdrawal operations on a bank account that
starts with zero balance. Your task is to detect if at any point the balance of
account fallls below zero, and at that point function should return True.
Otherwise it should return False."""

from typing import List
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0:

return True
return False

> Problem statement

> Partial code

Completion



Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. >Pr0blem statement
Otherwise it should return False."""

from typing import List N
def below_zero(operations: List[int]) -> bool:
balance = 0
for op in operations:
balance += op
if balance < 0: /

> Partial code

return True
return False

Completion



Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

Existing completion models assume error-free inputs ...



Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

Existing completion models assume error-free inputs ...

&

Bugs in code are inevitable!

(esp for the in-progress partial code)



Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process



Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. >Pr0blem statement
Otherwise it should return False."""

/
from typing import List ; N\
def below_zero(operations: List[int]) -> bool: :
balance = 0 : .
for op 1in operations: : > Partial code
balance += op :
if balance < 0: : y,
\

return True
return False

s Completion




Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False."""

/
from typing import List g from typing import List N
def below_zero(operations: List[int]) -> bool: : def below_zero(operations: List[int]) -> bool:
balance = 0 : balance = 0 .
for on 1in operations.: : for op din operations: > Partlal COde
balance += op : balance -= op ]
if balance < 0: : if balance < 0: /
return True § h

return False

v Completion




Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False."""

/
from typing import List g from typing import List N
def below_zero(operations: List[int]) -> bool: : def below_zero(operations: List[int]) -> bool:
balance = 0 : balance = 0 .
for on 1in operations.: : for op din operations: > Partlal COde
balance += op : balance -= op ]
if balance < 0: : if balance < 0: /
return True § h

return False

v Completion

Without potential bugs witn potenual bugs



A change from += — == results in a potential bug

— partial code + original completion fails test: below_zero(1, 2) ==
False

— the code completion should change

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False."""

/
from typing import List ; from typing import List N\
def below_zero(operations: List[int]) -> bool: : def below_zero(operations: List[int]) -> bool:
balance = 0 : balance = 0 .
for op in operations: : far op in operations: > Partial code
balance += op : balance -= op ]
if balance < 0: : if balance < 0: /
\

return True
return False

s Completion

Without potential bugs Wilh potental bugs



A change from += — == results in a potential bug

— partial code + original completion fails test: below_zero(1, 2) ==
False
— the code completion should change

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False.""" J
from typing import List ; from typing import List N\
def below_zero(operations: List[int]) -> bool: : def below_zero(operations: List[int]) -> bool:
balance = 0 H balance = 0 .
for op 1in operations: : for ap in nr\nr:ﬂ--innc- > Partlal COde
balance += op : balance -= op ]
if balance < 0: : if balance < 0: /
: N
return True : return False
return False : i = 0: .
u . if balance > o: > Completlon
: return True
return False y

Without potential bugs With potential bugs



New Benchmarks for Buggy Code Completion

Buggy-HumanEval Buggy-FixEval

e Artificial potential bugs ® Potential bugs procured.from

e Constructed from HumanEval user submissions to coding
problems

® (Constructed from FixEwval and

CodeNet



Analysis 1: Failures on Buggy-Code Completion

B Without partial code . Reference partial code B Buggy partial code

50.6

Pass@1

9.3
47 6.9
0.7 05 - 1.0

CG 350M-mono CG-2B- mono

8.6

- 4.3 2.9 1.2 6.4 1.8
CG-350M-mono CG-2B-mono Incoder-1B

3.3 2.4

Sk | —
Incoder 1B Incoder-6B

Incoder-6B

Performance drops hugely when potential bugs are present!

[CT]+°21] Chen et al., 2021. Evaluating large language models trained on code
[HALB’22] Haque et al., 2022. Fixeval: Execution-based evaluation of program fixes for competitive programming problems

5



Mitigation Methods for Completion

Strategy 1: Removal — Completion

Idea: remove the partial code to guarantee no potential bug

X1Sts! . .
trategy 2: Completion — Rewriting

Idea: treat the completion as buggy and attempt to fix.

Strategy 3: Rewriting — Completion

Idea: locate and rewrite potential bugs before being completed

[FAL+°22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.



Mitigation Methods for Completion

Strategy 1: Removal — Completion

Idea: remove the partial code to guarantee no potential bug

X1Sts! . .
trategy 2: Completion — Rewriting

Idea: treat the completion as buggy and attempt to fix.

Strategy 3: Rewriting — Completion
Idea: locate and rewrite potential bugs before being completed

\ Consider potential bug as distributional outliers
using an infilling model [FAL+722]

[FAL+°22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.



Analysis 2: Mitigation Methods for Completion

Methods improve the completion, but remain huge gap to the inference

B naive completion B completion — rewriting 0 reference partial code
B removal—completion BN rewriting—completion (ours)
37.8

32.3

241

8.6 9.2

24 33 23 31 s 47

12 29 17 26

CG-350M-mono CG-2B-mono Incoder-1B Incoder-6B
buggy-FixEval
54.9

Pass@1 (1)

CG-350M-mono CG-2B-mono Incoder-1B Incoder-6B
buggy-HumanEval



Ablation and Case Studies

When do Code-LLMs surpass?

60%: fails to react

Check if in given list of numbers, are any two
to each other than given threshold.

from typing import List
def has_close_elements (numbers: List[float],
threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 1in enumerate(numbers):
if ddx != ddx2:

distance = abs(elem - elem2)
if distance < threshold:
return True
return False

Without potential bugs

Bug and split location can affect the performance

bug location

- 98 5o
o - 29 0
©- 94 22 02 40
5- 66 0 05 43 .
]
© - 41 0 26 14 24 -0 B
° g
9 - 33 03 03 0 04 0 g
3- 3 090506 0 0 0 -20
m- 14 0 0 0 0 0 0 0O
o- 28 0 0 0 0 0 0 01 O -10
-0 0 0 0 0 0 0 0 0 0 =
U
01 02 03 04 05 06 07 08 09 10 -0

code split location

02 03 04 05 06 07 08 09 10

27
0 02
01 02

|
03

54
01
19
02

04

n

6

3

2

7

7

0

05
code split location

91
17
10
6.7
47
1

06

41
74
17

0
07

7 ou
:
3 B
2 (2
7 o2
318
nla
02 2
08 09

-50

S- - 50
o
3
- 40 g:, -40
g
25-
E
£ .
»
B
23
&
SR - 5 B -2
g3
23- 83 03 97
10 )
N- 41 32 44 92 10
;- 0 02 02 O 0
-0 01 02 03 04 05 06 07 08 09 10 -0

code split location

numbers closer

from typing import List
def has_close_elements(numbers: List[float],
threshold: float) -> bool:
for didx, elem in enumerate(numbers):
for idx2, elem2 1in enumerate(numbers):
if didx == ddx2:
continue
if abs(elem - elem2) < threshold:

return True
return False

With potential bugs
- n o
a- ¥ 1
2- B 1 15 10
c
=]
gg- 5 89 15 1 55 =
°9- 3 81 12 74 12 28
g
2
- 93 10 12 89 92 10 63 -0
g- 5 0 46 13 3 14 42 0
N- 17 03 17 04 15 16 03 18 0 -10
9-0 002 0 0 0 0 0 0 0
01 02 03 04 05 06 07 08 09 10 -0

code split location



Thank youl

Contact information:

Tuan Dinh: tuan.dinh@ucsf.edu
Jinman Zhao: 'inmazamazon.com

Poster: #539 (Wed 13 Dec 5 -- 7 p.m. CST)

Paper: https:/ /neurips.cc/virtual /2023 /poster/70988
Github: https://github.com/amazon-science/buggy-code-completion



mailto:tuan.dinh@ucsf.edu
mailto:yzeng58@wisc.edu
https://neurips.cc/virtual/2023/poster/70988

