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Code Completion with Code Language Models

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task 1is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False."""

Ve
from typing import List N
def below_zero(operations: List[int]) -> bool:
balance = © > Partial code

for op in operations:
balance += op
if balance < 0: /
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Code-LLMs achieve > 50% pass rate on various benchmarks

Existing completion models assume error-free inputs ...

&

Bugs in code are inevitable!

(esp for the in-progress partial code)
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Motivated scenarios: typos or logical mistakes during coding process
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A change from += — == results in a potential bug

— partial code + original completion fails test: below_zero(1, 2) ==
False

— the code completion should change
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A change from += — == results in a potential bug

— partial code + original completion fails test: below_zero(1, 2) ==
False
— the code completion should change

""" You're given a list of deposit and withdrawal operations on a bank account that Y
starts with zero balance. Your task is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. > Problem statement
Otherwise it should return False.""" J
from typing import List ; from typing import List N\
def below_zero(operations: List[int]) -> bool: : def below_zero(operations: List[int]) -> bool:
balance = 0 H balance = 0 .
for op 1in operations: : for ap in nr\nr:ﬂ--innc- > Partlal COde
balance += op : balance -= op ]
if balance < 0: : if balance < 0: /
: N
return True : return False
return False : i = 0: .
u . if balance > o: > Completlon
: return True
return False y

Without potential bugs With potential bugs



New Benchmarks for Buggy Code Completion

Buggy-HumanEval Buggy-FixEval

e Artificial potential bugs ® Potential bugs procured.from

e Constructed from HumanEval user submissions to coding
problems

® (Constructed from FixEwval and

CodeNet



Analysis 1: Failures on Buggy-Code Completion

B Without partial code . Reference partial code B Buggy partial code
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Performance drops hugely when potential bugs are present!

[CT]+°21] Chen et al., 2021. Evaluating large language models trained on code
[HALB’22] Haque et al., 2022. Fixeval: Execution-based evaluation of program fixes for competitive programming problems
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Mitigation Methods for Completion

Strategy 1: Removal — Completion

Idea: remove the partial code to guarantee no potential bug

X1Sts! . .
trategy 2: Completion — Rewriting

Idea: treat the completion as buggy and attempt to fix.

Strategy 3: Rewriting — Completion

Idea: locate and rewrite potential bugs before being completed

[FAL+°22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.



Mitigation Methods for Completion

Strategy 1: Removal — Completion

Idea: remove the partial code to guarantee no potential bug

X1Sts! . .
trategy 2: Completion — Rewriting

Idea: treat the completion as buggy and attempt to fix.

Strategy 3: Rewriting — Completion
Idea: locate and rewrite potential bugs before being completed

\ Consider potential bug as distributional outliers
using an infilling model [FAL+722]

[FAL+°22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.



Analysis 2: Mitigation Methods for Completion

Methods improve the completion, but remain huge gap to the inference
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Ablation and Case Studies

When do Code-LLMs surpass?

60%: fails to react

Check if in given list of numbers, are any two
to each other than given threshold.

from typing import List
def has_close_elements (numbers: List[float],
threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 1in enumerate(numbers):
if ddx != ddx2:

distance = abs(elem - elem2)
if distance < threshold:
return True
return False

Without potential bugs

Bug and split location can affect the performance

bug location
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numbers closer

from typing import List
def has_close_elements(numbers: List[float],
threshold: float) -> bool:
for didx, elem in enumerate(numbers):
for idx2, elem2 1in enumerate(numbers):
if didx == ddx2:
continue
if abs(elem - elem2) < threshold:

return True
return False

With potential bugs
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Thank youl

Contact information:
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