cT:{ s,
NEURAL INFORMATION
'i PROCESSING SYSTEMS
o -y

Causal Discovery
In Semi-Stationary Time Series

Shanyun Gaol, Raghavendra Addanki?, Tong Yu?, Ryan A. Rossi2, Murat Kocaoglu!

L Purdue University, West Lafayette, USA
2 Adobe Research, San Jose, USA

49 PURDUE [, ¥



Motivations

s Periodic nature is commonly observed in many real-world time series data.

s Periodic changes in the causal relations are expected underlying this type of time
series without assuming stationarity.
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https://ops.fhwa.dot.gov/congestion_report/chapter3.htm
https://link.springer.com/chapter/10.1007/978-3-030-55061-5_40
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Figurel. Partial causal graph for 3-variate time series V = {X1, X2, X3}
with a Stationary SCM

1.X] = fj(Pa(X]),€}), 5 € [n]
2.Pa(X] A,) = {Xiinr: Xi € Pa(X]),i € n]},VAt € N
3.{€l }1eir) are i.id.
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Figure2. Partial causal graph for 3-variate time series V = {X1, X?, X3}
with a Semi-Stationary SCM where w; = 3, w; = 2, w3 = 1. Same color incoming edges and
nodes with same color circle represent same causal mechanism.

For each j € [n], there exists an w € Ntsuch that :
Lfie = JjteNo

2.Pa(X], y,) = (X! o XL € Pa(X]),i € [n]}

.

7 9 . .
3.€, €4 N, are 1.1.d.
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For each j € [n], there exists an w € Ntsuch that :
L.fit = fit4Nw
2. Pa(Xt—I—Nw) = {X3+Nw X; S PCL(X{ej)ai € [n]}

J
3€t,et+Nw are i.i.d.
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¢ A constraint-based method designed for Semi-Stationary SCM:
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% A constraint-based method designed for Semi-Stationary SCM:
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Definition. 7ime Partition

A time partition I (T') of X7 € V in Semi-Stationary SCM with periodicity
w; is a way of dividing all time points ¢ € [T] into a collection of non-overlapping
non-empty subsets {II7 (1) } e[, such that:

H‘,i(T) ={t: Tmax + 1 <t <T,(t mod w;) + 1=k}

Variables in {X; J b eIt (T) share the same causal mechanism.
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E.g., find Pa(X}) on the correct time partition with w; = 3.

Pa(X})

{th}teni(T) > {Xt 17Xt2—2}t€H}(T)
Pa(X}
{th}teﬂé(T) #’ {Xt 1) E—l}teﬂé(T)
T | Pa(X)) |
{X¢ hem () {Xi 1} em ()
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% Intuition: 5(T)
& OspOTpOgP0 1O7OS 3O -
B O 01050 f\M\ﬁ/@ S.
"X?’O>u>O>OOLQOw@>
t: 4 5 6 7 9 10 12
Question: How to estimate w;?
Claim: For a univariate time series X7 € V in a Semi-Stationary SCM with
periodicity w;, w; # w; will lead to a denser graph.
PURDUE 08/04,/23 db

UNIVERSITY

fA



PCMCl,

>
[
OV

Gy =2 (T

s Intuition:

OspO150 ﬁ;‘ 7 %/’O '
xg/ SOAO=SO—0DO<D—0 /0 >
%t O O/ >O—0O QLO

t: 4 5 6 7 12

For a univariate time series X’ € V in a Seml—Statlonary SCM with periodicity wj,
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E.g., find Pa(X}) on the wrong time partition with &; = 2.

e

{Xt 1 Xt2 2}t€H1(T)

a(X} ). G, G
Use samples {th}teﬂ}(:r) ﬂ_‘ <{{ t— 1} t 1}tEH%(T)
X 1 |
telll(T)
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Email: gaob65@purdue.edu
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