

# Causal Discovery in Semi-Stationary Time Series

Shanyun Gao<sup>1</sup>, Raghavendra Addanki<sup>2</sup>, Tong Yu<sup>2</sup>, Ryan A. Rossi<sup>2</sup>, Murat Kocaoglu<sup>1</sup>



<sup>&</sup>lt;sup>1</sup> Purdue University, West Lafayette, USA

<sup>&</sup>lt;sup>2</sup> Adobe Research, San Jose, USA

#### Motivations

- Periodic nature is commonly observed in many real-world time series data.
- \* *Periodic* changes in the causal relations are expected underlying this type of time series without assuming stationarity.

#### Daily and Monthly Trends in Congestion San Antonio, Texas, 2000-2004



Source: Analysis of data from FHWA's Mobility Monitoring Program

#### **Human Walking**

SS and DS phases duration, measured as percentage of complete cycle.



Source: kalouguine,2020



❖ Stationary SCM:

Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.





Figure 1. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Stationary SCM

$$1.X_t^j = f_j(Pa(X_t^j), \epsilon_t^j), j \in [n]$$

$$2.Pa(X_{t+\Delta t}^{j}) = \{X_{s+\Delta t}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}, \forall \Delta t \in \mathbf{N}$$

$$3.\{\epsilon_t^j\}_{t\in[T]}$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



❖ Semi-Stationary SCM:



Figure 2. Partial causal graph for 3-variate time series  $V = \{X^1, X^2, X^3\}$  with a Semi-Stationary SCM where  $\omega_1 = 3$ ,  $\omega_2 = 2$ ,  $\omega_3 = 1$ . Same color incoming edges and nodes with same color circle represent same causal mechanism.

$$1.f_{j,t} = f_{j,t+N\omega}$$

$$2.Pa(X_{t+N\omega}^{j}) = \{X_{s+N\omega}^{i} : X_{s}^{i} \in Pa(X_{t}^{j}), i \in [n]\}$$

$$3.\epsilon_t^j, \epsilon_{t+N\omega}^j$$
 are i.i.d.



### $\mathrm{PCMCI}_{\Omega}$

❖ A constraint-based method designed for Semi-Stationary SCM:





### $PCMCI_{\Omega}$

❖ A constraint-based method designed for Semi-Stationary SCM:



#### Definition. Time Partition

A time partition  $\Pi^j(T)$  of  $X^j \in V$  in Semi-Stationary SCM with periodicity  $\omega_j$  is a way of dividing all time points  $t \in [T]$  into a collection of non-overlapping non-empty subsets  $\{\Pi_k^j(T)\}_{k \in [\omega_j]}$  such that:

$$\Pi_k^j(T) := \{t : \tau_{\max} + 1 \le t \le T, (t \mod \omega_j) + 1 = k\}$$

Variables in  $\{X_t^j\}_{t\in\Pi_k^j(T)}$  share the same causal mechanism.



### $PCMCI_{\Omega}$

❖ A constraint-based method designed for Semi-Stationary SCM:



#### Definition. Time Partition

A time partition  $\Pi^j(T)$  of  $X^j \in V$  in Semi-Stationary SCM with periodicity  $\omega_j$  is a way of dividing all time points  $t \in [T]$  into a collection of non-overlapping non-empty subsets  $\{\Pi_k^j(T)\}_{k \in [\omega_j]}$  such that:

$$\Pi_k^j(T) := \{t : \tau_{\max} + 1 \le t \le T, (t \mod \omega_j) + 1 = k\}$$

Variables in  $\{X_t^j\}_{t\in\Pi_h^j(T)}$  share the same causal mechanism.



### $\mathrm{PCMCI}_{\Omega}$



$$\omega_1 = 3$$

 $\Pi^1_2(T)$ 

#### **❖** Intuition:





E.g., find  $Pa(X_t^1)$  on the correct time partition with  $\omega_1 = 3$ .





### $PCMCI_{\Omega}$



$$\omega_1 = 3$$



**❖** Intuition:





Question: How to estimate  $\omega_j$ ?

Claim: For a univariate time series  $X^j \in V$  in a Semi-Stationary SCM with periodicity  $\omega_j$ ,  $\hat{\omega}_j \neq \omega_j$  will lead to a denser graph.



### $PCMCI_{\Omega}$

Intuition:

$$\omega_1 = 3$$

$$\hat{\omega}_1 = 2 \quad \hat{\Pi}_1^1(T)$$



For a univariate time series  $X^j \in V$  in a Semi-Stationary SCM with periodicity  $\omega_j$ ,  $\hat{\omega}_j \neq \omega_j$  will lead to a denser graph.

E.g., find  $Pa(X_t^1)$  on the wrong time partition with  $\hat{\omega}_1 = 2$ .



## Thank You

Email: gao565@purdue.edu

